Skip to main content

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...


What is Bit Error Rate (BER)?

The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as, 
In mathematics,

BER = (number of bits received in error / total number of transmitted bits) 

On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.  

What is Signal the signal-to-noise ratio (SNR)?

SNR = signal power/noise power
(SNR is a ratio of signal power to noise power)

SNR (in dB) = 10*log(signal power / noise power) [base 10]

For instance, the SNR for a given communication system is 3dB.
So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2
Therefore, in this instance, the signal power is twice as powerful as the noise power if SNR is 3dB.

Comparison of BER vs. SNR for BPSK, QPSK, 8-PSK, 16-PSK, 32-PSK, D-BPSK, D-QPSK, 4-QAM, 16-QAM, and 64-QAM

                              
Get MATLAB Code (BER vs. SNR for 64 QAM, 16 QAM, 4 QAM, D-QPSK, D-BPSK, 32 PSK, 16 PSK, 8 PSK, QPSK, BPSK - are shown there. Probability of BER Error {10log10(Pb)} and SNR in dB {E0 / N0 - SNR per bit} are plotted there.)
 
Get MATLAB Code for QAM
Get MATLAB Code for m-ary QAM  
Get MATLAB Code for m-ary PSK 

We usually use modulation schemes for better efficiency of bandwidth. For example, if we use a binary PSK system and someone uses a QPSK system, you can see you are transmitting only one bit in a symbol, and the QPSK user shares 2 bits in a signal at a time. Mathematically, the QPSK data rate or bit will be twice as compared to binary PSK or BPSK.

Further, QAM modulation techniques are introduced, which are a combination of Amplitude modulation and PSK. Which shows better performance than only PSK. And most information technology and consumer companies have already adopted this modulation technique for high data rate communication.

For example, if we are using 4 QAM, then we can send 2 bits in a symbol where the data rate is twice as compared to binary PSK. For 16 QAM, we send 4 bits in a symbol where the data rate is 4 times as compared to BPSK.

Here in the above figure, for PSK, the phase of the carrier signal is shifted to represent data. Where is 8 PSK, 3 bits fit in each symbol? In 8 PSK, the distance between the constellation point is small compared to BPSK, and 4 PSK and Eb/No ratio (SNR per bit) has to become more significant to attain target BER. In the above figure, QAM performs better than PSK in normal SNR. But if the channel is extremely noisy, then we go for BPSK.

Modulation Techniques No of Bits in a Symbol
 BPSK  1
 QPSK  2
 8-PSK  3
 16-QAM  4
64-QAM 6

We use OFDM technology for practical communication systems, e.g., for 4G LTE. Data bits are first mapped using QAM and then fed to an inverse fast Fourier transform the system to modulate the data with multicarrier signals. The signal is transmitted thru an antenna. That's why OFDM is called the multicarrier modulation technique or MCM.

We frequently use BER vs. SNR graph to compare how one modulation scheme is better. For example, to maintain the same bit error rate (BER), we need less SNR in a typical PSK system than FSK, as PSK is less susceptible to noise than FSK.

On the other hand, the ASK system is more sensitive to noise than FSK and PSK.

So, if we arrange the above three modulation schemes as per their noise resistance, then we get,

PSK > FSK > ASK

[Read more about ASK, FSK, and PSK]

So, to maintain the same bit error rate (BER) in a communication process, we need to provide less Power (SNR) to a PSK system and more SNR to an ASK system.
 

1. BER vs SNR for m-ary PSK




2. BER vs SNR for m-ary QAM






 3. BER vs SNR for ASK, FSK, and PSK

 
 
 
 
 
 
 

 
 
 
 
 
 

4. Theoretical BER vs SNR for Alamouti Scheme


Get MATLAB Code

 

Different approaches to calculate BER vs SNR

1. Theoretical BER vs. SNR: Using probability theories of BER vs. SNR. Example - ASK, FSK, PSK done before


 
 

 

2. Adding AWGN noise at different SNR to the transmitted modulated signal and then plot the BER at different SNR values



 


 


3. Calculate BER vs SNR from Channel Impulse Response





People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation

   Pulse Width Modulation (PWM) MATLAB Script clc; clear all; close all; fs=30; %frequency of the sawtooth signal fm=3; %frequency of the message signal sampling_frequency = 10e3; a=0.5; % amplitide t=0:(1/sampling_frequency):1; %sampling rate of 10kHz sawtooth=2*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave subplot(4,1,1); plot(t,sawtooth); % plotting the sawtooth wave title('Comparator Wave'); msg=a.*sin(2*pi*fm*t); %generating message wave subplot(4,1,2); plot(t,msg); %plotting the sine message wave title('Message Signal'); for i=1:length(sawtooth) if (msg(i)>=sawtooth(i)) pwm(i)=1; %is message signal amplitude at i th sample is greater than %sawtooth wave amplitude at i th sample else pwm(i)=0; end end subplot(4,1,3); plot(t,pwm,'r'); title('PWM'); axis([0 1 0 1.1]); %to keep the pwm visible during plotting. %% Demodulation % Demodulation: Measure the pulse width to reconstruct the signal demodulated_signal = zeros(size(msg)); for i = 1:leng...

High Level and Low Level Modulation

High Level and Low Level Modulation You know for wireless communication is suitable for long distance communication. In wireless, for data transmission modulation become essential to avoid interference and to reduce antenna size significantly. Especially, in modulation process, we translate the low frequency baseband signal to higher frequency by modulating with high frequency carrier signal. For a typical communication system we generate the high frequency (carrier) signal by using local oscillator. Source signal or message signal is modulated with local oscillator. Then modulated signal is transmitted thru antenna.  Low Level Modulation In low level modulation, message signal is modulated with local  oscillator  that produces high frequency. Then the frequency of message signal is translated to much higher frequency. Then the modulated signal passes thru wideband amplifier. High Level Modulation In high level modulation, source or message signal is passed thru wideband ...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...