Skip to main content

MIMO, massive MIMO, and Beamforming

 

The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via beamforming or directional transmission.


1. Some essential characteristics of a MIMO system

1.1. Spatial Division Multiplexing Access (SDMA)

SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter.


1.2. Spatial Multiplexing

Another essential feature of MIMO systems is spatial multiplexing. The singular value decomposition of the channel matrix is used to create independent data streams. We assign power to these separate paths using the eigenvalue matrix in this technique.

One of SDMA's difficulties is solved here. Assume two devices are connected to BS in the case of spatial division multiplexing. Now, BS will be perplexed to decide how much power will be utilized by each user; on the other hand, BS can transmit similar power to those mobile devices that are positioned at 6 meters and 100 meters apart, accordingly from the BS station. There is power wastage since a user's device positioned 6 meters away can connect with BS without consuming as much power as a user's device positioned 100 meters away. Because the transmitter has some channel information, this problem is overcome using the spatial multiplexing technique.


2. Mathematical representation of a MIMO system




Here, h11 represents the connection between transmission antenna no 1 and receiver antenna no 1. It also represents the channel gain between transmitter antenna no. 1 and receiver antenna no. 1, and so on.

Mathematically, it is written as,

y=Hx+n

Or,




+ n


Here, y is the received signal vector

         H denotes the channel matrix

         n denotes the noise vector


3. Capacity of a MIMO system

First, we try to calculate channel information using SVD, H=UVH

The channel matrix is divided in this way: U and V are unitary matrices and ∑ diagonal eigenvalue matrices with decreasing order of components. It assists us in allocating the necessary power to each eigen path. Each diagonal eigenmatrix element is responsible for an independent path between the transmitter and receiver. Shortly, we'll write a separate article about SVD.

For now, the system’s capacity is,

C = log2 det(1 + ฯ*HQHHbits/s/Hz

Where, Q = VSVH

             S = diagonal matrix derived after allocating power to the diagonal matrix ∑ above.


Benefits of Massive MIMO

1. Improved coverage at cell edge:

Suppose a mobile station (MS) is near the base station (BS). It receives a stronger signal. However, mobile stations are relatively far away from this base station and receive poor energy. Massive mimo solves this problem by using beamforming. The base station focuses more energy on those mobile stations.

2. Improved throughput


3. It enables brand new Millimeter Wave Band
These frequencies lose their energy very quickly due to path loss. Here, beamforming is a means to boost the energy to deliver it to the end user.

#beamforming  # mimo beamforming


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview of Delay Spread and Multi-path ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on RMS Delay Spread, Excess Delay ... ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Online Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes for Calculating Different Types of delay Spreads Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Baseband and Passband Implementations of ASK, FSK, and PSK ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Baseband and Passband ... ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory of Pulse Amplitude Moduation (PAM) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal ๐Ÿงฎ Simulation results for comparison of PAM, PWM, PPM, DM, and PCM ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Pulse Amplitude Modulation ... ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

๐Ÿ“˜ How Beamforming Improves SNR ๐Ÿงฎ MATLAB Code ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Beamforming in MATLAB ... MIMO / Massive MIMO Beamforming Techniques Beamforming Techniques MATLAB Codes for Beamforming... How Beamforming Improves SNR The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR)...

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...