Skip to main content

Sender, Source & Channel Coding, Channel, Receiver in wireless communication - step by step



Mechanism of wireless communication - step by step:

Example: 

 

 Original Analog Message signal

 
 Sampled Message Signal (Digitalized Signal)
 
Quantized Message Signal (Mapped to Finite Signal Levels)


Encoded Signal (after Source Coding)

 
 
Then we perform channel coding to enable error correction during transmission. Then, we apply modulation and transmit the signal through a wireless medium. After receiving the signal, we first demodulate it, then apply channel decoding followed by source decoding, and finally retrieve the original message signal. 
In our case, the source message signal is analog, not digital. However, the process discussed here is applicable to Pulse Code Modulation (PCM) signal. For analog signal transmission, we simply modulate the signal with a higher frequency and then transmit it. On the receiver side, we apply the demodulation process to the received signal and retrieve the original analog message signal. 
 
 
 
 





Modern Wireless Communication Process:

 


 

Fig: Process of wireless communication

 

In the above figures, a typical wireless communication system is illustrated. The original message signal—such as digitized computer data (a bit stream of 0s and 1s)—is first sampled and then quantized. After quantization, the signal undergoes source coding, where it is efficiently encoded into binary form. To transmit this signal over a wireless medium, the binary bits are modulated using an appropriate modulation scheme.

At the receiver end, the signal is first demodulated, followed by source decoding and any additional processing needed to reconstruct the original message signal (e.g., audio). Channel coding, which is typically applied after source coding, enables error detection and correction to combat impairments like attenuation and multi-path fading introduced during transmission.

 

Wireless communication is a method of communication in which the transmitter and receiver communicate over the air or free space. Between the transmitter and the receiver, there is no wiring for wireless communication. The communication path, which is air or free space in this case, is referred to as a channel. The electrical signal is converted by the transmitter as '0' and '1'. The electric signal then transmits via the channel (air or free space) after a successful modulation procedure. The signal is then received by the receiver. It is practically difficult to recover the same signal that the transmitter sends. Due to attenuation or distortion, the signal becomes corrupted while travelling across the channel. A wireless communication system's fundamentals are as follows.

The following is a list of the various elements involved in the wireless communication process

1.Sender
2.Message
3.Encoding (source & channel coding)
4.Channel
5.Receiver
6.Decoding
7.Acknowlegement / Feedback



Sender:


Here, in communication process sender is who sends messages, files, audio, etc. to indented receiver. Here, sender send his message from smartphones, PCs, etc. using specific application.


Digitization of Message Signal in Communication Process (sampling + quantization):

In general, message signal's source is analogue in nature. Now, the analogue signal is turned into a digital signal (or, the original analogue signal is changed into '0' or'1' bits) by sampling and then quantization). Quantization helps to map the signal into finite levels. We convert analog signals to digital signals using the analog to digital converter (ADC).

There are also some exceptional cases where the source signal is not analog. The acquired images by radar, for example, are not analog signals because the image is a digital signal. After that, we process it and deliver it to the receivers on earth.


Source coding / encoding:


We are aware that the original message file is huge in size. Imagine how much memory is required to store a one-hour voice recording. It's likely that a few GB of memory is required. When we convert it to digital by just sampling at the very beginning of transmission procedure, it still requires a large number of memories to store. On the other hand, we always prefer to transmit a compressed signal over an uncompressed huge file if possible. So, we compress it. We use coding, also known as source coding, to compress the digitalized message signal. Source coding can reduce the size of a message signal. The message signal could be text, audio, or voice, for example. Text, voice, and audio messages can all benefit from source coding. For sending, original message without compressing it, it will take longer and result in more bit errors due to the larger file size. Popular examples of source coding are Huffman coding, LZW coding, etc.


Channel Coding:


After source coding, channel coding allows us to code the compressed message signal with various types of coding, such as forward error correcting (FEC) coding, so that we can recover the required message signal at the receiver terminal even if some bits are lost or distorted. Another illustration is the use of the CRC or cyclic coding technique in OFDM 4G-LTE communication to retrieve the original signal or measure the channel's status.


 

Simulation Results:

1. Suppose we are sending a text message signal 'Wireless'
 

Explore This Simulation

Explore Signal Processing Simulations

# Wireless channel are more prone to bit error than wired channels

Digital communication and its application and pictures


Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights... Configuration of single-user digital precoder for millimeter-wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrices on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal, which helps decrease or cancel (theoretically) interference between any two data streams. For a MIMO system, the channel matrix can be effectively **diago...