Skip to main content

Sender, Source & Channel Coding, Channel, Receiver in wireless communication - step by step



Mechanism of wireless communication - step by step:

Example: 

 

 Original Analog Message signal

 
 Sampled Message Signal (Digitalized Signal)
 
Quantized Message Signal (Mapped to Finite Signal Levels)


Encoded Signal (after Source Coding)

 
 
Then we perform channel coding to enable error correction during transmission. Then, we apply modulation and transmit the signal through a wireless medium. After receiving the signal, we first demodulate it, then apply channel decoding followed by source decoding, and finally retrieve the original message signal. 
In our case, the source message signal is analog, not digital. However, the process discussed here is applicable to Pulse Code Modulation (PCM) signal. For analog signal transmission, we simply modulate the signal with a higher frequency and then transmit it. On the receiver side, we apply the demodulation process to the received signal and retrieve the original analog message signal. 
 
 
 
 





Modern Wireless Communication Process:

 


 

Fig: Process of wireless communication

 

In the above figures, a typical wireless communication system is illustrated. The original message signal—such as digitized computer data (a bit stream of 0s and 1s)—is first sampled and then quantized. After quantization, the signal undergoes source coding, where it is efficiently encoded into binary form. To transmit this signal over a wireless medium, the binary bits are modulated using an appropriate modulation scheme.

At the receiver end, the signal is first demodulated, followed by source decoding and any additional processing needed to reconstruct the original message signal (e.g., audio). Channel coding, which is typically applied after source coding, enables error detection and correction to combat impairments like attenuation and multi-path fading introduced during transmission.

 

Wireless communication is a method of communication in which the transmitter and receiver communicate over the air or free space. Between the transmitter and the receiver, there is no wiring for wireless communication. The communication path, which is air or free space in this case, is referred to as a channel. The electrical signal is converted by the transmitter as '0' and '1'. The electric signal then transmits via the channel (air or free space) after a successful modulation procedure. The signal is then received by the receiver. It is practically difficult to recover the same signal that the transmitter sends. Due to attenuation or distortion, the signal becomes corrupted while travelling across the channel. A wireless communication system's fundamentals are as follows.

The following is a list of the various elements involved in the wireless communication process

1.Sender
2.Message
3.Encoding (source & channel coding)
4.Channel
5.Receiver
6.Decoding
7.Acknowlegement / Feedback



Sender:


Here, in communication process sender is who sends messages, files, audio, etc. to indented receiver. Here, sender send his message from smartphones, PCs, etc. using specific application.


Digitization of Message Signal in Communication Process (sampling + quantization):

In general, message signal's source is analogue in nature. Now, the analogue signal is turned into a digital signal (or, the original analogue signal is changed into '0' or'1' bits) by sampling and then quantization). Quantization helps to map the signal into finite levels. We convert analog signals to digital signals using the analog to digital converter (ADC).

There are also some exceptional cases where the source signal is not analog. The acquired images by radar, for example, are not analog signals because the image is a digital signal. After that, we process it and deliver it to the receivers on earth.


Source coding / encoding:


We are aware that the original message file is huge in size. Imagine how much memory is required to store a one-hour voice recording. It's likely that a few GB of memory is required. When we convert it to digital by just sampling at the very beginning of transmission procedure, it still requires a large number of memories to store. On the other hand, we always prefer to transmit a compressed signal over an uncompressed huge file if possible. So, we compress it. We use coding, also known as source coding, to compress the digitalized message signal. Source coding can reduce the size of a message signal. The message signal could be text, audio, or voice, for example. Text, voice, and audio messages can all benefit from source coding. For sending, original message without compressing it, it will take longer and result in more bit errors due to the larger file size. Popular examples of source coding are Huffman coding, LZW coding, etc.


Channel Coding:


After source coding, channel coding allows us to code the compressed message signal with various types of coding, such as forward error correcting (FEC) coding, so that we can recover the required message signal at the receiver terminal even if some bits are lost or distorted. Another illustration is the use of the CRC or cyclic coding technique in OFDM 4G-LTE communication to retrieve the original signal or measure the channel's status.


 

Simulation Results:

1. Suppose we are sending a text message signal 'Wireless'
 

Explore This Simulation

Explore Signal Processing Simulations

# Wireless channel are more prone to bit error than wired channels

Digital communication and its application and pictures


Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

๐Ÿงฎ Coherence Bandwidth ๐Ÿงฎ Coherence Time ๐Ÿงฎ MATLAB Code s ๐Ÿ“š Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Pulse Position Modulation (PPM)

Pulse Position Modulation (PPM) is a type of signal modulation in which M message bits are encoded by transmitting a single pulse within one of 2แดน possible time positions within a fixed time frame. This process is repeated every T seconds , resulting in a data rate of M/T bits per second . PPM is a form of analog modulation where the position of each pulse is varied according to the amplitude of the sampled modulating signal , while the amplitude and width of the pulses remain constant . This means only the timing (position) of the pulse carries the information. PPM is commonly used in optical and wireless communications , especially where multipath interference is minimal or needs to be reduced. Because the information is carried in timing , it's more robust in some noisy environments compared to other modulation schemes. Although PPM can be used for analog signal modulation , it is also used in digital communications where each pulse position represents a symbol or bit...

Bartlett Method in MATLAB

Steps to calculate Spectral power density using Bartlett Method 'M' is the length of each segment for the Bartlett method, set to 100 samples. 'K' is the number of segments obtained by dividing the total number of samples N by the segment length 'M'. psd_bartlett_broadband is initialized to store the accumulated periodogram. For each segment k, x_k extracts the k-th segment of the broadband signal. P_k computes the periodogram of the k-th segment using the FFT. The periodograms are accumulated and averaged over all segments. The PSD is plotted in dB/Hz by converting the power values to decibels using 10 * log10.   MATLAB Script clc; clear; close all; % Parameters fs = 1000; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector N = length(t); % Number of samples % Generate synthetic broadband ARMA process arma_order = [2, 2]; % ARMA(p,q) order a = [1, -0.75, 0....