Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Present and Future Wireless Communication Systems


1. Overview of 5G:

Looking back in time, we can see that we have adopted a new evolution or G in each decade. We were first introduced to 4G technology in 2010. However, we now need to make some changes to our current network. We're looking for two things in particular: 1. A network that is extremely dense, and 2. Broadband connectivity through cellular networks. Around 2020, 5G technology was commercialized. By 2025, it is anticipated that extensive adaption will be achievable. [Read More about 5G]


2. Limitations of 4G LTE:

Previously, with 4G LTE, a single base station (BS) could connect hundreds of devices at once. In the current situation, we need to expand the capacity of our system. Because the amount of bandwidth needed by various devices is continually rising. Every decade, it grows by a factor of 1000. As a result, every ten years, an entirely new evolution of G is required. [Read More]


3. The reason of the increasing data demand:

The number of wireless devices is increasing every day, yet the internet-based services, such as self-driving cars, streaming ultra-high-definition video, andIoTsensors, need both high data rates and extremely low latency to function in real time. Between 2011 and 2022, mobile data traffic will increase at a compound annual growth rate of 46%. It would have reached 2.58 exabytes (EB) daily by 2022. Statistics show that by 2022, the amount of internet protocol (IP) traffic worldwide is expected to exceed 4.8 zettabytes (ZBs) annually.


4. High data rates and more connections are offered to users with 5G:

Thousands of devices per square kilometer are projected to be supported by 5G. We urgently require it since the number of internet-connected devices, IoTs, and PDAs is continuously expanding, necessitating a large amount of bandwidth to operate them. Because 5G employs extremely high frequency or millimeter wave, it is capable of doing so. Previously, we've seen bandwidth allotment of roughly 2GHz per channel in WI PAN applications employing the 60 GHz millimeter wave spectrum. In the case of a cellular 5G network, we will now ‎utilize‎ this millimeter wave spectrum. That is very incredible. We'll use massive MIMO to make better use of the spectrum resource because millimeter wave has a lot of promise for greater bandwidth. Massive MIMO is an excellent way to boost system capacity even more. Using those incredible core technologies, we've almost reached the Shannon limit in 5G communication.

Our economy will be greatly impacted by 5G. Automation may be seen in a variety of sectors and industries. Machine-to-machine communication, augmented reality (AR), and virtual reality will all be common in the future. We will be able to control machines from afar and in real time. For many years, internet-connected high-speed vehicles, such as bullet trains, have been a major source of concern. Everything is feasible thanks to the ultra-low latency of the 5G millimeter wave spectrum. Communication latency will be decreased to 1 ms in 5G, compared to 40 ms in 4G.

Although 5G has a lot of potential, it also has several drawbacks, such as a complex channel model (sparse channel matrix), high propagation path loss, and so on. We've talked about a lot of problems and potential remedies.


5. Upcoming Wireless Mobile Generations, Millimeter Wave Band, and Massive MIMO: 
 
We are consistently upgrading our cellular wireless network's generation(G in telecom) and the IEEE body is releasing new WLAN technology, all to satisfy the demand for high data traffic from various internet-connected devices. As a result, we're moving to 5G, The essential technology for 5G connectivity is the millimeter wave (mmWave) band. The frequency range for mm-Wave is 30 to 300 GHz. To address the rising demand for data traffic on a worldwide scale, other spectrum bands need to be investigated. The millimeter wave band with massive MIMO antenna allows for a directed and narrow beam, which boosts the received signal power to an adequate level. Wi-Max, and other technologies to give greater connectivity to the fast-growing number of internet-connected devices. The fundamental goal of upgrading communication systems or the evolution of G is to offer enough bandwidth for all devices to connect with BSs seamlessly (due to the large amount of bandwidth available in the mm-wave band,Ultra-Wide Band (UWB),or microwave link communication) as well as to improve bandwidth efficiency (by applying new modulation techniques or designing antenna more properly for those systems, etc.).

The maximum bandwidth of the LTE cellular system, which operates at a sub-6 GHz operating frequency, is 200 MHz. However, WPAN, which operates in the 60 GHz unsilenced millimeter wave range, can give each channel a bandwidth of 2 GHz. The ITU classifies the millimeter wave band, which spans frequencies from 30 to 300 GHz, as extremely high frequency (or EHF). It is referred to as a millimeter wave since its wavelength varies from 1 millimeter to 10 millimeter. By providing high data rate wireless communication, where traffic from mobile and wireless devices will account for 71% of overall IP traffic, millimeter wave with massive MIMO will be crucial in meeting these demands.

N.B. We don't spam. Various posts about modern wireless communication systems, WLAN, 5G, IoTs, MIMO technology, Web design, programming, and other topics are published here. Don't forget tosubscribefor our newsletter.


Also read about

[1] 1G to 5G Technology - Evolution ofMobile Wireless Generations
[2] Important Wireless Communication Terms




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Raised Cosine Filter in MATLAB

  MATLAB Code clc; clear all; close all; Data_sym = [0 1 1 0 1 0 0 1]; M = 4; Phase = 0; Sampling_rate = 48e3; Data_Rate = 100; Bandwidth = 400; Upsampling_factor = Sampling_rate/Data_Rate; Rolloff = 0.4; Upsampled_Data = upsample(pskmod(Data_sym,M,Phase),Upsampling_factor); Pulse_shape = firrcos(2*Upsampling_factor,Bandwidth/2,Rolloff,Sampling_rate,'rolloff','sqrt'); Output What if we change the roll-off roll-off = 0.01 roll-off = 0.99 What if we change the bandwidth Bandwidth = 100 Hz     Bandwidth = 1000 Hz    What if we change the sampling rate  Sampling rate = 10 KHz  Sampling rate = 100 KHz Another MATLAB Code % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters fs = 1000; % Sampling frequency in Hz symbolRate = 100; % Symbol rate (baud) span = 6; % Filter span in symbols alpha = 0.25; % Roll-off factor for raised cosine filter % Generate random data symbols numSymbols = 100; % Number of symbols data = randi([0 1], num...

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier ...

Frequency Bands : EHF, SHF, UHF, VHF, HF, MF, LF, VLF and Their Uses

Frequency Bands EHF, SHF, UHF, VHF, HF, MF, LF... 1. Extremely High Frequency (EHF)30 - 300 GHz Uses 5G Networks 5G millimeter wave band , 6G and beyond (Experimental) RADAR, 2. Super High Frequency (SHF)3 - 30 GHz Uses Ultra-wideband (UWB , Airborne RADAR, Satellite Communication, Microwave Link Communication or SATCOM 3. Ultra High Frequency (UHF)300 - 3000 MHz Uses Satellite Communication, Television, surveillance, navigation aids Also, read important wireless communication terms 4. Very High Frequency (VHF)30 - 300 MHz Uses Television, FM broadcast, navigation aids, air traffic control, 5. High Frequency (HF)3 - 30 MHz Uses Telephone, Telegram and Facsimile, ship to coast, ship to aircraft communication, amateur radio, 6. Medium Frequency (MF)300 - 3000 KHz Uses coast guard communication, direction finding, AM broadcasting , maritime radio, 7. Low Frequency (LF)30 - 300 KHz Uses Radio beacons, Navigational Aids 8. Very Low Frequency (VLF)3 - 30 KHz...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK...