Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Frequently Asked Questions about 5G | 1G to 5G, Side Effects, Modulation ...


Following questions were raised by anonymous website visitors or readers to the online publishers. We'll check up a few queries among them below.


Reason behind change in network upgradation from 1g to 5g?

In a nutshell, the answer to this issue is that bandwidth demands are increasing. The bandwidth allotted to a specific service, for example, is fixed. Now, if the number of devices linked to the internet is growing by the day, what would you do to meet the increasing bandwidth demand? As a result, every few decades, a whole new G (or generation in cellular wireless communication) appears to meet the required requirements. Read More ...


Does my PDA support 5g?

It is entirely dependent on the mobile or cell phone's operational frequency band. More specifically, the frequency band that your mobile antenna receives or broadcasts is determined by your antenna.


Can a CSE can study 5g courses?

Prerequisites to pursuing a 5G course:

You must have some good understanding in previous G's especially in Telecommunication to pursue a 5G course. Here concept of cell, operating frequency, infrastructure all are different as compare to 3G or 4G network. The key technologies to enable 5G are

You must have basic knowledge about wireless channel model, modulation schemes used in 3G and 4G, antennas used in those technologies, etc. to make yourself fit for pursuing a course on 5GMIMO Technology, SVD, etc.Basic knowledge on UWB or millimeter wave is a big plus for that.


What additional benefits may you expect if you have a background in computer science or engineering?

Machine learning (ML) and artificial intelligence (AI) are becoming increasingly important as we advance in technology. Python is a great programming language for machine learning and artificial intelligence. It is a significant benefit if you have a thorough understanding of programming languages, particularly Python. Deep Learning (DL) is a common tool in 5G simulation, bandwidth allocation, beamforming, and channel estimation, among other applications.

It is now entirely up to you whether or if you are interested in 5G courses. We recommend that you have a fundamental understanding of telecommunications, including prior G's such as 3G and 4G, operating frequencies, used modulation or multiplexing techniques, MIMO technologies, and so on.


Any side effects of 5g cables overhead my house

No


Any side effects of 5g cell tower around my house

In reality, cell towers emit radiation at a level that is safe for humans . Only when you receive a call or your signal level on the screen drops below, the cell tower provide more power to your phone. However, that power is also below the standard of safety. According to experts, this is unlikely to cause harm. You may be aware that the transmitted power from cell towers or access points (APs) in 5G communication will be lower than in 3G or 4G.


What are the clusters and side lobes?

A. We usually discuss the term 'time cluster' or 'cluster' in case of extremely high frequency communication system. Where signal gets reflected and refracted multiple times in environment due to very high frequency. When signal (MPCs) come to receiver and they are close in time then they form cluster. Technically, they are (MPCs) close in time in spatial domain.

While reading any chapter on beamforming, you may come across the terms 'main lobe' and' side lobe.' In this case, side lobes are a group of MPCs that are close in angle in terms of AOA (angle of arrival) or AOD (angle of departure) (angle of departure). Continue Reading ...


Which modulation techniques are used in 5G?

A. OFDM, NOMA


What is millimeter wave technology?

A. Millimeter wave band with huge potentiality like -- huge bandwidth resource and ultra low latency properties which is a most suitable candidate to enable millimeter wave 5G communication. Although, most countries are still using sub 6 GHz band for 5G networks. Due to extremely high frequency it's wavelength spans between 10 millimeter to 1 millimeter, so it is termed as 'Millimeter Wave'.


What companies develop 5g antennas?

A. Laird is one of them.


What is the difference between 1g and 5g in switching technique in DCC?


Internet of Things (IOTs)


How is career in IOT?

A. IoT professionals have a bright future. Almost every person will use IoTs, sensors, and wearables for their daily requirements in the near future. It can be used in a variety of businesses, from home appliances to heavy industries. Hospitals, fleet management, traffic control, smart cities, and other applications can all benefit from it. Read more...


Which workshop is better for CSE students either IOT or robotics?

IOT based solar panel enabled extension box
The compact sensors with IOT is going to make huge impact in patients Life
What are the types of interfaces additional required for connecting IOT devices in plug and play mode?

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for Rank and Condition Number of a Channel Matrix

To assess the signal strengths of various multipaths between TX and RX and enable communication, the rank and condition numbers of a channel matrix are highly helpful characteristics. Signal multipath propagation is a typical occurrence in wireless communication. Phases shift and the signal weakens during this process. We are discussing signal phases in this context. When numerous multipaths arrive at the receiver, the resulting signal may be additive or destructive because of phase alterations. A channel matrix is referred to as a sparse matrix if it only has a few stronger elements and the majority of the other elements are zero. Finding rank and condition number for sparse matrices is important for numerous reasons. That topic has already been covered in another article [ click here ]. We will just talk about the corresponding MATLAB codes here. MATLAB Code for Rank and Condition Number of a Channel Matrix %Author: Salim Wireless For study materials on wireless %com...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. clc;clear all;...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

HomePage

  (Search any topic) Search any topic on the whole website Modulation Signal Processing Beamforming MATLAB 5G Wireless GATE-ESE-NET Programming Telecommunication Channel Impulse Response Computer Networks MIMO - Multiple Input Multiple Output Filters Millimeter wave Python   Constellation Diagrams BER vs SNR Electronics Industry Fourier Series and Fourier Transform Frequency bands Wireless Communication Q & A ASK FSK PSK Channel Model IoTs UWB pskmod Antenna Applications and Games C Programming Channel Estimation Equalizers Gaussian Random Variable Projects Q & A QAM Transform Fading Microwave News about 5G PAM Python Matrix Operations SSC Exam Web Design WordPress Ionospheric Communication JavaScript MATLAB Simulink Mobile & Accessories OFDM Signal Processing for 5G Analog Circuits Cell Towers Computer Digital Circuits Fourier Series HomePage Information and Coding Theory Laplace Transform MySQL Node.js Search ShareLinkF / Generate QR Z Transform ...

Star to Delta Conversion and Vice Versa | star delta conversion

The transformation of a star to a delta and a delta to a star circuit is a hot topic in electrical science and engineering. Examiners often ask about the conversion of star to delta and delta to star circuit diagram. When solving complex circuits, the conversion procedure can sometimes ease calculations and save time. Without further ado, we'll go over the characteristics of both a star and a delta circuit. As its title suggests, the star circuit looks like a star. Delta circuit, on the other hand, looks like a delta. Now we'll look at the mathematical method for converting delta to star and star to delta. Delta to Star R1 = RaRb / (Ra + Rb + Rc) R2 = RbRc / (Ra + Rb + Rc) R3 = RaRc / (Ra + Rb + Rc) Use star to delta online converter and vice versa Star to Delta Ra = (R1R2 + R2R3 + R3R1) / R2 Rb = (R1R2 + R2R3 + R3R1) / R3 Rc = (R1R2 + R2R3 + R3R1) / R1 Next Page>>

Channel Estimation utilizing Decision Feedback Equalizer (DFE)

  Channel estimation using DFE is a similar process to a non-linear equalization process. In DFE (decision feed equalizer), equalization error bits/symbols between the feedforward tabs and feedback taps are calculated continuously. And equalizer's tap weights tap weights are updated correspondingly.  In plain language, the error between the received bits and known training bits is calculated, and tap weights are updated accordingly. The equalizer estimates the channel impulse response (CIR) .  Once we find the channel impulse response or channel information, we can easily retrieve the original message signal from the noisy data. In the communication process, the whole system is modeled as a linear time-invariant (LTI) system. And  y = h*x + n where, y = received signal            x = transmitted signal           n = additive white Gaussian noise [Read more about the Linear time-invariant (LTI) system and convolu...