Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Sky Wave, Microwave Link Communication and Satellite Communication (SATCOM)


Overview

Sky Wave, Microwave Link Communication, and Satellite Communication  (SATCOM) are the focus of this article. Sky Waves are essentially AM waves that the ionosphere reflects. For long-distance communication on Earth, we employ standard microwave link transmission. However, we all know that the earth is not flat, but rather oval in shape. As a result, the signal can only reach a few kilometers on a straight line of sight path (LOS). The signal is then reflected by the earth's surface. But we know that with that microwave link, we can communicate hundreds of kilometers distance. We'll look at how this happens in this article. Terrestrial satellite communication has now replaced microwave relay link communication.

sky wave

Figure: Ionosphere Reflection - suitable for AM band (Sky Wave)

1. Sky Wave

You can see how the ionosphere bounces the radio signal and enables the ground station to communicate with the transmitter hundreds of kilometers away. This method is ideal for communication at low or medium frequencies. Ionosphere reflects low (AM band) or medium (<30 MHz) range frequency.

Due to its high frequency, the microwave band cuts through the ionosphere, making it ideal for communicating with satellites. However, with the help of the ionosphere, we can efficiently receive a signal at a distance of roughly 650 kilometers from the transmitter.


1.1. Role of Ionosphere for Sky Wave

The ionosphere is one of the top levels of the earth's atmosphere, as we all know. Its altitude ranges from 30 to 600 miles above the earth's surface. We, as humans, reside in the troposphere. Atoms and molecules in the ionosphere are electrically charged. The ionosphere has the unique property of reflecting radio signals below 30 MHz. Signals with operating frequencies greater than 30 MHz penetrate the ionosphere layer. Also, do not return to Earth. In this situation, we always keep the frequency below 30 MHz. When we send a signal via a microwave link, the earth's ionosphere reflects it. In the diagram above, the transmitter emits a signal, which is then reflected by the ground and, in a similar way, by the ionosphere. According to our knowledge, a received signal reflected by the ionosphere is easier to receive by a receiver than a reflected signal by the ground.   

1.3. Frequency Range

535 to 1705 KHz


2. Microwave Link Communication

For terrestrial microwave communication, we depended largely on relay communication. For line-of-sight communication, each relay station is situated 150-200 kilometers apart. However, a key disadvantage of relay communication was that if one of the relay stations in the middle failed, the entire system would fail. As a result, we rely more on satellites. Microwave, on the other hand, is significantly more refracted by hills than low-frequency AM band. As a result, the considerable path loss is observed in the case of microwaves when employing a microwave relay link. In the case of microwave communication, the line of communication is also taken into account.  
microwave link communication

 
 
Microwave link communication is used for long-distance microwave communication. In this situation, a powerful directional microwave beam is used to go further in the earth's troposphere. 

2.1. Frequency Range:

Although microwave frequencies can range from 300 MHz to 300 GHz, we often choose sub-6 GHz frequencies or frequencies between 1 and 6 GHz for microwave link communication.

.

3. Satellite Communication

However, you should be aware that a line-of-sight connection between the transmitter and the receiver is not possible during the whole communication path. Before that signal is reflected by the ground, foliage, and other objects, it becomes scattered and weaker. On the other hand, if one intermediary relay fails, the entire communication system will stop working. As a result, we rely on the signal reflected by the satellites in this case. If there is no ionosphere or satellite, the signal can only travel 150 - 200 kilometers (approx.) as shown in the above figure. Satellite television is a real-world example of terrestrial satellite communication.

3.1. Frequency Range:

Frequencies range from 1 to 40 GHz.
satellite communication

Difference between advantages of tropospheric wave propagation and sky wave (waves reflected or refracted by ionosphere) propagation



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Raised Cosine Filter in MATLAB

  MATLAB Code clc; clear all; close all; Data_sym = [0 1 1 0 1 0 0 1]; M = 4; Phase = 0; Sampling_rate = 48e3; Data_Rate = 100; Bandwidth = 400; Upsampling_factor = Sampling_rate/Data_Rate; Rolloff = 0.4; Upsampled_Data = upsample(pskmod(Data_sym,M,Phase),Upsampling_factor); Pulse_shape = firrcos(2*Upsampling_factor,Bandwidth/2,Rolloff,Sampling_rate,'rolloff','sqrt'); Output What if we change the roll-off roll-off = 0.01 roll-off = 0.99 What if we change the bandwidth Bandwidth = 100 Hz     Bandwidth = 1000 Hz    What if we change the sampling rate  Sampling rate = 10 KHz  Sampling rate = 100 KHz Another MATLAB Code % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters fs = 1000; % Sampling frequency in Hz symbolRate = 100; % Symbol rate (baud) span = 6; % Filter span in symbols alpha = 0.25; % Roll-off factor for raised cosine filter % Generate random data symbols numSymbols = 100; % Number of symbols data = randi([0 1], num...

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier ...

Frequency Bands : EHF, SHF, UHF, VHF, HF, MF, LF, VLF and Their Uses

Frequency Bands EHF, SHF, UHF, VHF, HF, MF, LF... 1. Extremely High Frequency (EHF)30 - 300 GHz Uses 5G Networks 5G millimeter wave band , 6G and beyond (Experimental) RADAR, 2. Super High Frequency (SHF)3 - 30 GHz Uses Ultra-wideband (UWB , Airborne RADAR, Satellite Communication, Microwave Link Communication or SATCOM 3. Ultra High Frequency (UHF)300 - 3000 MHz Uses Satellite Communication, Television, surveillance, navigation aids Also, read important wireless communication terms 4. Very High Frequency (VHF)30 - 300 MHz Uses Television, FM broadcast, navigation aids, air traffic control, 5. High Frequency (HF)3 - 30 MHz Uses Telephone, Telegram and Facsimile, ship to coast, ship to aircraft communication, amateur radio, 6. Medium Frequency (MF)300 - 3000 KHz Uses coast guard communication, direction finding, AM broadcasting , maritime radio, 7. Low Frequency (LF)30 - 300 KHz Uses Radio beacons, Navigational Aids 8. Very Low Frequency (VLF)3 - 30 KHz...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK...