Skip to main content

Sky Wave, Microwave Link Communication and Satellite Communication (SATCOM)


Overview

Sky Wave, Microwave Link Communication, and Satellite Communication  (SATCOM) are the focus of this article. Sky Waves are essentially AM waves that the ionosphere reflects. For long-distance communication on Earth, we employ standard microwave link transmission. However, we all know that the earth is not flat, but rather oval in shape. As a result, the signal can only reach a few kilometers on a straight line of sight path (LOS). The signal is then reflected by the earth's surface. But we know that with that microwave link, we can communicate hundreds of kilometers distance. We'll look at how this happens in this article. Terrestrial satellite communication has now replaced microwave relay link communication.

sky wave

Figure: Ionosphere Reflection - suitable for AM band (Sky Wave)

1. Sky Wave

You can see how the ionosphere bounces the radio signal and enables the ground station to communicate with the transmitter hundreds of kilometers away. This method is ideal for communication at low or medium frequencies. Ionosphere reflects low (AM band) or medium (<30 MHz) range frequency.

Due to its high frequency, the microwave band cuts through the ionosphere, making it ideal for communicating with satellites. However, with the help of the ionosphere, we can efficiently receive a signal at a distance of roughly 650 kilometers from the transmitter.


1.1. Role of Ionosphere for Sky Wave

The ionosphere is one of the top levels of the earth's atmosphere, as we all know. Its altitude ranges from 30 to 600 miles above the earth's surface. We, as humans, reside in the troposphere. Atoms and molecules in the ionosphere are electrically charged. The ionosphere has the unique property of reflecting radio signals below 30 MHz. Signals with operating frequencies greater than 30 MHz penetrate the ionosphere layer. Also, do not return to Earth. In this situation, we always keep the frequency below 30 MHz. When we send a signal via a microwave link, the earth's ionosphere reflects it. In the diagram above, the transmitter emits a signal, which is then reflected by the ground and, in a similar way, by the ionosphere. According to our knowledge, a received signal reflected by the ionosphere is easier to receive by a receiver than a reflected signal by the ground.   

1.3. Frequency Range

535 to 1705 KHz


2. Microwave Link Communication

For terrestrial microwave communication, we depended largely on relay communication. For line-of-sight communication, each relay station is situated 150-200 kilometers apart. However, a key disadvantage of relay communication was that if one of the relay stations in the middle failed, the entire system would fail. As a result, we rely more on satellites. Microwave, on the other hand, is significantly more refracted by hills than low-frequency AM band. As a result, the considerable path loss is observed in the case of microwaves when employing a microwave relay link. In the case of microwave communication, the line of communication is also taken into account.  
microwave link communication

 
 
Microwave link communication is used for long-distance microwave communication. In this situation, a powerful directional microwave beam is used to go further in the earth's troposphere. 

2.1. Frequency Range:

Although microwave frequencies can range from 300 MHz to 300 GHz, we often choose sub-6 GHz frequencies or frequencies between 1 and 6 GHz for microwave link communication.

.

3. Satellite Communication

However, you should be aware that a line-of-sight connection between the transmitter and the receiver is not possible during the whole communication path. Before that signal is reflected by the ground, foliage, and other objects, it becomes scattered and weaker. On the other hand, if one intermediary relay fails, the entire communication system will stop working. As a result, we rely on the signal reflected by the satellites in this case. If there is no ionosphere or satellite, the signal can only travel 150 - 200 kilometers (approx.) as shown in the above figure. Satellite television is a real-world example of terrestrial satellite communication.

3.1. Frequency Range:

Frequencies range from 1 to 40 GHz.
satellite communication

Difference between advantages of tropospheric wave propagation and sky wave (waves reflected or refracted by ionosphere) propagation



People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / ΃) , where ΃ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for m-ary PSK and QAM

Relationship Between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) The relationship between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) is a fundamental concept in digital communication systems. Here’s a detailed explanation: BER (Bit Error Rate): The ratio of the number of bits incorrectly received to the total number of bits transmitted. It measures the quality of the communication link. SNR (Signal-to-Noise Ratio): The ratio of the signal power to the noise power, indicating how much the signal is corrupted by noise. Relationship The BER typically decreases as the SNR increases. This relationship helps evaluate the performance of various modulation schemes. BPSK (Binary Phase Shift Keying) Simple and robust. BER in AWGN channel: BER = 0.5 × erfc(√SNR) Performs well at low SNR. QPSK (Quadrature...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...