Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks

Internet of Things (IoTs) : Definition & Its Applications


'Internet of Things' is abbreviated as IoT. For example, we can connect all sensors in a building (such as fire alarms and temperature sensors) and control them remotely from anywhere in the globe. We can, on the other hand, use it to create a smart city. In a logistic system, we may use it to cut down on unnecessary costs and keep things running smoothly.

We'll now discuss how to connect those gadgets to the internet. Cloud services are required for this. The IoT devices should then be connected to the cloud server. You may also operate those IoT devices through a website or an app (as per your need). Your website or app will, however, communicate with the cloud, and all operations will take place on the cloud server. To connect your IoT devices to the internet, you can utilize Amazon Web Services (AWS). The author is not advocating Amazon AWS services in this article. If you can afford it, go for it.


What are the functions of IoT devices?

The major goal of deploying IoT devices is to bring large-scale automation into our daily lives. This will also lower human affords while boosting the economy. It will be used for monitoring 24*7 at a low cost. It will also create new job opportunities as demand grows every day.


How can the Internet of Things (IoT) help to revolutionize our society?

Sensors, robotics, and machineries connected to the internet, V2V (vehicle to vehicle) communication, V2I (vehicle to infrastructure) communication, and M2M (machine to machine) communication have all been major concerns for many years. Although these devices consume less data, it is critical to maintain ultra-low latency in order to connect with all IoT devices (nodes) in real time. Due to its large bandwidth resource, modern 5G technology or millimeter wave band has the potential to handle thousands of devices per square kilometer simultaneously and smoothly. The extremely high frequency band, on the other hand, satisfies the ultra-low latency condition as well.


In which areas may the Internet of Things be used to benefit society?


Agriculture

It can give real-time monitoring of crop growth and the requirement for crop harvesting. It may monitor the dryness of the soil, for example, and assist in watering the plants as needed, thanks to AI (artificial intelligence). It has the potential to make farming easier than it has ever been before.


Construction

In construction sites, AI (artificial intelligence) combined with IoT devices can be utilized for risk management, reducing construction site mishaps by adding an extra layer of security.


Education

IoT sensors can be used for energy management by installing IoTs in lights and taps.  It can also be utilised to create a safe and secure school or college atmosphere. With the use of AI, a student can select appropriate elective subjects based on their knowledge. Educational learning apps, on the other hand, can make decisions based on how subject knowledge is provided as well as inputs or feedback from students.


Fleet Management

In today's world, road safety is a hot topic. Every day, many lives are lost as a result of road accidents. We can monitor roadways 24*7, thanks to AI-enabled IoTs. If an accident occurs, or someone violates the speed limit, it will alert the response team immediately. In the same way, IoT sensors put on vehicles can aid fleet management. It has the potential to increase commercial vehicle safety and efficiency.


Healthcare

We all know how critical IoT devices are in the healthcare industry. Every second counts for a patient in this situation. The creation of cloud-based healthcare systems is an excellent notion for saving many lives. Patients, for example, can download healthcare apps to their smartphones based on their needs, and the app will monitor the patient's health state 24 hours a day, seven days a week. It will also automatically convey the message to nearby relatives or doctors.


Logistics

Without a question, a country's logistic system is its economic backbone. If it fails even slightly, we will see price hikes all around us. With an AI-enabled IoT-based logistic system, society can experience a revolution by decreasing unnecessary delays in the delivery process as well as reducing commodities waste.

 

Smart Cities and Spaces

As we move forward in time, we realize the importance of smart cities. This will aid in energy management, air pollution reduction, water management, traffic management, healthcare, parking, and natural disaster management, among other things.


Smart Campus


Smart Malls/Retail


Traffic Management

Traffic management in cities is essential; otherwise, there will be major traffic congestion in popular locations and completely empty streets elsewhere. This is partly dependent on the road's architecture and layout, however smart traffic signals can help. For example, traffic lights should adjust automatically based on traffic volume, with green lights lasting longer when there is more traffic and shorter when the streets are empty. Roads and bridges can also be fitted with sensors to monitor their condition and repair them if they show signs of wear and tear. 

#Unmanned aerial vehicle



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

Channel Estimation utilizing Decision Feedback Equalizer (DFE)

  Channel estimation using DFE is a similar process to a non-linear equalization process. In DFE (decision feed equalizer), equalization error bits/symbols between the feedforward tabs and feedback taps are calculated continuously. And equalizer's tap weights tap weights are updated correspondingly.  In plain language, the error between the received bits and known training bits is calculated, and tap weights are updated accordingly. The equalizer estimates the channel impulse response (CIR) .  Once we find the channel impulse response or channel information, we can easily retrieve the original message signal from the noisy data. In the communication process, the whole system is modeled as a linear time-invariant (LTI) system. And  y = h*x + n where, y = received signal            x = transmitted signal           n = additive white Gaussian noise [Read more about the Linear time-invariant (LTI) system and convolu...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Hybrid Beamforming | Page 1

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | Hybrid Beamforming: Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming. Overview of hybrid beam forming with example: Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybr...

Constellation Diagram of PSK in Detail

        Fig 1: Constellation Diagram of PSK    In the above figure, the binary bit '1' is represented by S1(t) and the binary bit '0' by S2(t), respectively. So, energy of S1(t) = (√(Eb))2 = Eb So, energy of S2(t) = (-√(Eb))2 = Eb Distance between the signaling points, d12 = 2(√(Eb))   Energy per bit for binary '1' and binary '0'           High-order PSK (e.g., 8 PSK, 16 PSK) can transmit more bits per symbol but is more sensitive to noise. Low-order PSK (e.g., BPSK, QPSK) is less susceptible to noise. PSK modulation can be visualized using a constellation diagram, where each point represents a symbol. In the presence of noise, points may be away from the original positions, making them harder to distinguish.