Skip to main content

Internet of Things (IoTs) : Definition & Its Applications


'Internet of Things' is abbreviated as IoT. For example, we can connect all sensors in a building (such as fire alarms and temperature sensors) and control them remotely from anywhere in the globe. We can, on the other hand, use it to create a smart city. In a logistic system, we may use it to cut down on unnecessary costs and keep things running smoothly.

We'll now discuss how to connect those gadgets to the internet. Cloud services are required for this. The IoT devices should then be connected to the cloud server. You may also operate those IoT devices through a website or an app (as per your need). Your website or app will, however, communicate with the cloud, and all operations will take place on the cloud server. To connect your IoT devices to the internet, you can utilize Amazon Web Services (AWS). The author is not advocating Amazon AWS services in this article. If you can afford it, go for it.


What are the functions of IoT devices?

The major goal of deploying IoT devices is to bring large-scale automation into our daily lives. This will also lower human affords while boosting the economy. It will be used for monitoring 24*7 at a low cost. It will also create new job opportunities as demand grows every day.


How can the Internet of Things (IoT) help to revolutionize our society?

Sensors, robotics, and machineries connected to the internet, V2V (vehicle to vehicle) communication, V2I (vehicle to infrastructure) communication, and M2M (machine to machine) communication have all been major concerns for many years. Although these devices consume less data, it is critical to maintain ultra-low latency in order to connect with all IoT devices (nodes) in real time. Due to its large bandwidth resource, modern 5G technology or millimeter wave band has the potential to handle thousands of devices per square kilometer simultaneously and smoothly. The extremely high frequency band, on the other hand, satisfies the ultra-low latency condition as well.


In which areas may the Internet of Things be used to benefit society?


Agriculture

It can give real-time monitoring of crop growth and the requirement for crop harvesting. It may monitor the dryness of the soil, for example, and assist in watering the plants as needed, thanks to AI (artificial intelligence). It has the potential to make farming easier than it has ever been before.


Construction

In construction sites, AI (artificial intelligence) combined with IoT devices can be utilized for risk management, reducing construction site mishaps by adding an extra layer of security.


Education

IoT sensors can be used for energy management by installing IoTs in lights and taps.  It can also be utilised to create a safe and secure school or college atmosphere. With the use of AI, a student can select appropriate elective subjects based on their knowledge. Educational learning apps, on the other hand, can make decisions based on how subject knowledge is provided as well as inputs or feedback from students.


Fleet Management

In today's world, road safety is a hot topic. Every day, many lives are lost as a result of road accidents. We can monitor roadways 24*7, thanks to AI-enabled IoTs. If an accident occurs, or someone violates the speed limit, it will alert the response team immediately. In the same way, IoT sensors put on vehicles can aid fleet management. It has the potential to increase commercial vehicle safety and efficiency.


Healthcare

We all know how critical IoT devices are in the healthcare industry. Every second counts for a patient in this situation. The creation of cloud-based healthcare systems is an excellent notion for saving many lives. Patients, for example, can download healthcare apps to their smartphones based on their needs, and the app will monitor the patient's health state 24 hours a day, seven days a week. It will also automatically convey the message to nearby relatives or doctors.


Logistics

Without a question, a country's logistic system is its economic backbone. If it fails even slightly, we will see price hikes all around us. With an AI-enabled IoT-based logistic system, society can experience a revolution by decreasing unnecessary delays in the delivery process as well as reducing commodities waste.

 

Smart Cities and Spaces

As we move forward in time, we realize the importance of smart cities. This will aid in energy management, air pollution reduction, water management, traffic management, healthcare, parking, and natural disaster management, among other things.


Smart Campus


Smart Malls/Retail


Traffic Management

Traffic management in cities is essential; otherwise, there will be major traffic congestion in popular locations and completely empty streets elsewhere. This is partly dependent on the road's architecture and layout, however smart traffic signals can help. For example, traffic lights should adjust automatically based on traffic volume, with green lights lasting longer when there is more traffic and shorter when the streets are empty. Roads and bridges can also be fitted with sensors to monitor their condition and repair them if they show signs of wear and tear. 

#Unmanned aerial vehicle



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Simulation Results 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview 🧮 Multipath Components or MPCs 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 🧮 Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes 📚 Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

📘 Overview 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols ...