Skip to main content

MATLAB Code Constellation Diagrams of M-ary PSK (e.g, 4, 8, 16, 32, 64, 128)



What is the difference between Bit and Symbol in the perspective of transmission?

Symbols use bandwidth more efficiently than bits. For example, in the case of QPSK, one symbol or signal waveform is represented by 2 bits. Hence symbol rate is one-half of the bit rate. As a result, it occupies half bandwidth compared to the BPSK waveform.

We know the primary purpose of modulation [↗] is to multiplex data. Here multiplexing is done so that there is less interference between parallel data streams. Suppose there is a communication channel; we can transmit a single data stream simultaneously. But if we send a symbol instead of a bit, we can send more than 1 bit at a time. In ASK modulation, we assign two amplitude levels to a signal where a higher level is represented by binary '1' and another level as '0'. For BFSK, we apply phase shift in signal (for example, 0 phase shift for consecutive binary '0' bits and 180 phase shift for a binary bit '1'. ASK, FSK, and PSK [↗] - are primary modulation techniques. With the help of those modulation techniques, we derive many other digital modulations capable of carrying more bits thru a channel as a symbol at a time. For example, in QPSK (Quadrature Phase Shift Keying), we can transmit a symbol two bits at a time thru a channel. A total of 4 symbols use 2 bits per symbol and a phase difference of 90 degrees between them. An example of QPSK is shown below. Here you see that the data rate of the channel is getting double when we transmit 2 bits at a time.


1. What is a constellation diagram


A constellation diagram represents a signal modulated by a digital signal, such as quadrature amplitude modulation (QAM) or quadrature phase shift keying (QPSK). [Read More]


QPSK


Assume we need to modulate four signals or symbols with phase differences of Ï€/2 so that the signals can be orthogonal, which will minimize their mutual interference. Then we can modulate those signals in the following way:

s(t)=Acos(2Ï€fct) for 00

= A cos (2Ï€fct + 90) for 01

= A cos (2Ï€fct + 180) for 10

= A cos (2Ï€fct + 270) for 11

Here, the first signal is modulated with a carrier signal. The next signal is modulated with π/2 shifted same carrier signal, the third signal with additional π/2 shifted to the same carrier signal, and so on. The modulated first signal is represented by the symbol '00', the second modulated signal by the symbol '01', and so forth.





In the above figure, we've shown a constellation diagram of 4 QPSK modulations.


Also, read about the Constellation Diagrams of ASK, FSK, and PSK, Constellation Diagrams of M-ary QAM


2. What is the significance of M-ary PSK?


In Mary PSK, given data bits are modulated with any of the M numbers of phase-shifted carrier signals. Let's send M number of data bits modulated with M number of phase-shifted carriers. Theoretically, there will be no interference (theoretically) between them, and we will achieve 8 times the previous data rate (without modulation).

The RF carrier's phase (or frequency) varies instead of only varying the RF signal's phase, frequency, or amplitude. Mary modulation algorithms transfer baseband data into four or more alternative RF carrier signals since the envelope and phase provide two degrees of freedom. We are talking about four carrier signals because here, 2 or more bits form a symbol, and from 2 bits, we can represent 2^(2) or 4 different signals. M-ary modulation is the name given to such modulation schemes. Two or more bits are joined together to create symbols in the M-ary modulation scheme, and one of the available signals S1(t), S2(t),..., Sm(t) is sent during each symbol period Ts. M = 2^n, where n is an integer that defines the number of bits/symbols, the total number of possible signals.

The modulation is called M-ary ASK, M-ary PSK, or M-ary FSK, depending on whether the amplitude, phase, or frequency is altered. M-ary modulation techniques are appealing for application in bandlimited channels because they improve bandwidth efficiency while sacrificing power efficiency. For example, an 8-PSK system utilizes the channel log8 (base 2) = 3 times more efficiently than a 2-PSK (also known as BPSK) system, as the bandwidth of a physical channel is always limited. M-ary signaling, on the other hand, has lower error performance due to the reduced distances between signals in the constellation diagram. The following sections go through a few of the most common M-ary signaling methods.

8-PSK 

 

16-PSK

 

 
 

MATLAB Code for M-ary PSK (e.g, 4, 8, 16, 32, 64, 128)

%The code is developed by SalimWireless.com
% M-ary PSK Modulation and Demodulation
clc;
clear;
close all;

% Parameters
M = 32;  % Order of PSK (M-PSK)
N = 1000;  % Number of symbols
SNR = 10;  % Signal-to-Noise Ratio in dB

% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);

% Modulate using M-PSK
txSignal = pskmod(dataSymbols, M);

% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');

% Demodulate
demodulatedSymbols = pskdemod(rxSignal, M);

% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;

% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);

% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output






Copy the MATLAB Code above from here



3. What can we conclude from the above M-ary PSK


Both QPSK and QAM are used to send signals in the form of symbols and to increase the bit rate. If you send a symbol instead of a single bit at a time, then multiple prior data rates will be achieved. Those mary modulation techniques are used to multiplex data.

If you are using simple ASK, FSK, or 2-PSK, and if the data rate is N

Then, the following modulation techniques increase data rates further.

4-PSK, 4-QAM ==>2N

Because here 2 bits are sent as a symbol once

8-PSK, 8-QAM ==>3N

Because here 3 bits are sent as a symbol once

Read More about OFDM, QAM, QPSK, BPSK, FSK, etc.


constellation diagram of qpsk  # qpsk constellation diagram  # Constellation diagram of ask psk fsk


Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication ...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview 🧮 Multipath Components or MPCs 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 🧮 Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes 📚 Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

📘 Overview 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols ...