Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Constellation Diagrams of M-ary PSK | M-ary Modulation


What is the difference between Bit and Symbol in the perspective of transmission?

Symbols use bandwidth more efficiently than bits. For example, in the case of QPSK, one symbol or signal waveform is represented by 2 bits. Hence symbol rate is one-half of the bit rate. As a result, it occupies half bandwidth compared to the BPSK waveform.

We know the primary purpose of modulation [↗] is to multiplex data. Here multiplexing is done so that there is less interference between parallel data streams. Suppose there is a communication channel; we can transmit a single data stream simultaneously. But if we send a symbol instead of a bit, we can send more than 1 bit at a time. In ASK modulation, we assign two amplitude levels to a signal where a higher level is represented by binary '1' and another level as '0'. For BFSK, we apply phase shift in signal (for example, 0 phase shift for consecutive binary '0' bits and 180 phase shift for a binary bit '1'. ASK, FSK, and PSK [↗] - are primary modulation techniques. With the help of those modulation techniques, we derive many other digital modulations capable of carrying more bits thru a channel as a symbol at a time. For example, in QPSK (Quadrature Phase Shift Keying), we can transmit a symbol two bits at a time thru a channel. A total of 4 symbols use 2 bits per symbol and a phase difference of 90 degrees between them. An example of QPSK is shown below. Here you see that the data rate of the channel is getting double when we transmit 2 bits at a time.


1. What is a constellation diagram


A constellation diagram represents a signal modulated by a digital signal, such as quadrature amplitude modulation (QAM) or quadrature phase shift keying (QPSK). [Read More]


QPSK


Assume we need to modulate four signals or symbols with phase differences of Ï€/2 so that the signals can be orthogonal, which will minimize their mutual interference. Then we can modulate those signals in the following way:

s(t)=Acos(2Ï€fct) for 00

= A cos (2Ï€fct + 90) for 01

= A cos (2Ï€fct + 180) for 10

= A cos (2Ï€fct + 270) for 11

Here, the first signal is modulated with a carrier signal. The next signal is modulated with π/2 shifted same carrier signal, the third signal with additional π/2 shifted to the same carrier signal, and so on. The modulated first signal is represented by the symbol '00', the second modulated signal by the symbol '01', and so forth.





In the above figure, we've shown a constellation diagram of 4 QPSK modulations.


Also, read about the Constellation Diagrams of ASK, FSK, and PSK, Constellation Diagrams of M-ary QAM


2. What is the significance of M-ary PSK?


In Mary PSK, given data bits are modulated with any of the M numbers of phase-shifted carrier signals. Let's send M number of data bits modulated with M number of phase-shifted carriers. Theoretically, there will be no interference (theoretically) between them, and we will achieve 8 times the previous data rate (without modulation).

The RF carrier's phase (or frequency) varies instead of only varying the RF signal's phase, frequency, or amplitude. Mary modulation algorithms transfer baseband data into four or more alternative RF carrier signals since the envelope and phase provide two degrees of freedom. We are talking about four carrier signals because here, 2 or more bits form a symbol, and from 2 bits, we can represent 2^(2) or 4 different signals. M-ary modulation is the name given to such modulation schemes. Two or more bits are joined together to create symbols in the M-ary modulation scheme, and one of the available signals S1(t), S2(t),..., Sm(t) is sent during each symbol period Ts. M = 2^n, where n is an integer that defines the number of bits/symbols, the total number of possible signals.

The modulation is called M-ary ASK, M-ary PSK, or M-ary FSK, depending on whether the amplitude, phase, or frequency is altered. M-ary modulation techniques are appealing for application in bandlimited channels because they improve bandwidth efficiency while sacrificing power efficiency. For example, an 8-PSK system utilizes the channel log8 (base 2) = 3 times more efficiently than a 2-PSK (also known as BPSK) system, as the bandwidth of a physical channel is always limited. M-ary signaling, on the other hand, has lower error performance due to the reduced distances between signals in the constellation diagram. The following sections go through a few of the most common M-ary signaling methods.

8-PSK 

 

16-PSK

 

 
 

MATLAB Code for M-ary PSK (e.g, 4, 8, 16, 32, 64, 128)

%The code is developed by SalimWireless.com
% M-ary PSK Modulation and Demodulation
clc;
clear;
close all;

% Parameters
M = 32;  % Order of PSK (M-PSK)
N = 1000;  % Number of symbols
SNR = 10;  % Signal-to-Noise Ratio in dB

% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);

% Modulate using M-PSK
txSignal = pskmod(dataSymbols, M);

% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');

% Demodulate
demodulatedSymbols = pskdemod(rxSignal, M);

% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;

% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);

% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output






Copy the MATLAB Code above from here



3. What can we conclude from the above M-ary PSK


Both QPSK and QAM are used to send signals in the form of symbols and to increase the bit rate. If you send a symbol instead of a single bit at a time, then multiple prior data rates will be achieved. Those mary modulation techniques are used to multiplex data.

If you are using simple ASK, FSK, or 2-PSK, and if the data rate is N

Then, the following modulation techniques increase data rates further.

4-PSK, 4-QAM ==>2N

Because here 2 bits are sent as a symbol once

8-PSK, 8-QAM ==>3N

Because here 3 bits are sent as a symbol once

Read More about OFDM, QAM, QPSK, BPSK, FSK, etc.


constellation diagram of qpsk  # qpsk constellation diagram  # Constellation diagram of ask psk fsk

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Raised Cosine Filter in MATLAB

  MATLAB Code clc; clear all; close all; Data_sym = [0 1 1 0 1 0 0 1]; M = 4; Phase = 0; Sampling_rate = 48e3; Data_Rate = 100; Bandwidth = 400; Upsampling_factor = Sampling_rate/Data_Rate; Rolloff = 0.4; Upsampled_Data = upsample(pskmod(Data_sym,M,Phase),Upsampling_factor); Pulse_shape = firrcos(2*Upsampling_factor,Bandwidth/2,Rolloff,Sampling_rate,'rolloff','sqrt'); Output What if we change the roll-off roll-off = 0.01 roll-off = 0.99 What if we change the bandwidth Bandwidth = 100 Hz     Bandwidth = 1000 Hz    What if we change the sampling rate  Sampling rate = 10 KHz  Sampling rate = 100 KHz Another MATLAB Code % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters fs = 1000; % Sampling frequency in Hz symbolRate = 100; % Symbol rate (baud) span = 6; % Filter span in symbols alpha = 0.25; % Roll-off factor for raised cosine filter % Generate random data symbols numSymbols = 100; % Number of symbols data = randi([0 1], num...

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier ...

Frequency Bands : EHF, SHF, UHF, VHF, HF, MF, LF, VLF and Their Uses

Frequency Bands EHF, SHF, UHF, VHF, HF, MF, LF... 1. Extremely High Frequency (EHF)30 - 300 GHz Uses 5G Networks 5G millimeter wave band , 6G and beyond (Experimental) RADAR, 2. Super High Frequency (SHF)3 - 30 GHz Uses Ultra-wideband (UWB , Airborne RADAR, Satellite Communication, Microwave Link Communication or SATCOM 3. Ultra High Frequency (UHF)300 - 3000 MHz Uses Satellite Communication, Television, surveillance, navigation aids Also, read important wireless communication terms 4. Very High Frequency (VHF)30 - 300 MHz Uses Television, FM broadcast, navigation aids, air traffic control, 5. High Frequency (HF)3 - 30 MHz Uses Telephone, Telegram and Facsimile, ship to coast, ship to aircraft communication, amateur radio, 6. Medium Frequency (MF)300 - 3000 KHz Uses coast guard communication, direction finding, AM broadcasting , maritime radio, 7. Low Frequency (LF)30 - 300 KHz Uses Radio beacons, Navigational Aids 8. Very Low Frequency (VLF)3 - 30 KHz...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK...