Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

5G : Channel modelling for millimeter wave


Channel modelling for millimeter wave 5G communication:

In general, we employ 1. analytical channel modelling; 2. map based channel modelling; and 3. sinusoidal channel modelling for wireless communication channel modelling. Analytical modelling is based on measurements such as pathloss, rms delay spread, and so on. Map-based channel modelling, on the other hand, is focused on the geographical architecture of a specific location. When we derive a channel model for a specific frequency band, we use these two models. We'll focus on channel modelling for millimetre wave communication, which is a promising contender for enabling 5G communications.

When interacting with metal, glass, and other surfaces, mm Wave signals have a higher reflectivity and are more easily absorbed by air, rain, and other elements than signals in lower frequency bands. Furthermore, its diffraction ability is reduced. As we aforementioned channel modelling approaches fall into one of three categories: analytical modelling, map-based modelling, and stochastic modelling. Analytical modelling uses a set of established parameters, whereas ray-tracing-based modelling focuses on locating signal paths in the environment. For applications such as massive MIMO and enhanced beam formation, the map-based model delivers precise and realistic spatial channel features.


Analytical Channel Modelling:

The appropriate statistical parameters such as number of pathways, root-mean-square (RMS) delay spread, path loss, and shadowing of the propagation channel can be produced using the analytical modelling approach, which is based on the data of measurements or statistical characteristics of the scenario. Without taking into account the specifics of the environment, this method can be represented using a given set of parameters. As a result, in an anisotropic radio environment, the analysis result may be inaccurate.


Map-based Channel Modelling:

For applications such as massive MIMO and sophisticated beamforming, the map-based model delivers precise and realistic spatial channel features. It automatically generates spatially consistent modelling for difficult instances like D2D and V2V links with dual-end mobility. Ray tracing is used in conjunction with a reduced 3D geometric description of the propagation environment to create the model. Diffraction, specular reflection, diffuse scattering, and blocking are all considered important propagation mechanisms. The electromagnetic material properties of building walls are modelled as rectangular surfaces. There is no explicit path loss model in the map-based model. Instead, path loss, shadowing, and other propagation features are defined by the map layout and, optionally, a random distribution of objects that account for people, automobiles, and trees, among other things.


General description:

A geometrical representation of the environment – such as a map or a building layout expressed in a three-dimensional (3D) Cartesian coordinate system – is required for any ray-tracing-based model. It is not necessary to have a high level of map detail. Building walls and potentially other fixed structures are the only things that need to be defined.

Here in the above figure signal reaches to cell phone via MPCs where paths are either reflected or reflected. The probability of LOS path decreases as operating frequency increases.


Creation of the environment:

When walls are modelled as rectangular surfaces, a 3D map comprising coordinate points of wall corners is constructed. Both outside and indoor maps, as well as the position of indoor walls within a building block, are defined in the outdoor-to-indoor instance. The map is then strewn with random scattering/shadowing objects that depict persons, automobiles, and other items. The item positions can then be defined either based on a known regular pattern, such as the spectator seats in a stadium, or randomly selected from a uniform distribution with a set situation dependent density.


Determination of propagation pathways:

Direct, diffraction, specular reflection, and diffuse scattering must all be represented for this purpose, as seen in Figure above. The diffuse scattering caused by rough surfaces is compensated for by placing point scatterers on the external walls' surface.

Here in millimeter wave channel modelling map-based channel modeling is very important because here types of obstacle's surfaces, constructional architecture of a area, angle of arrival and departure (AoA and AoD) matters a lot.


Stochastic Channel Modelling:

The stochastic model is based on the Geometry-based Stochastic Channel Models (GSCMs) family, which includes 3GPP 3D Channel Models. It concentrates on path loss, the sum-of-sinusoids approach for calculating large-scale parameters, and so on.

#beamforming

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

BER vs SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in an AWGN channel is g

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK semilogy(EbNoVec_qpsk, ber_qpsk_theo, 's-', &#

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili