Skip to main content

5G : Channel modelling for millimeter wave


Channel modelling for millimeter wave 5G communication:

In general, we employ 1. analytical channel modelling; 2. map based channel modelling; and 3. sinusoidal channel modelling for wireless communication channel modelling. Analytical modelling is based on measurements such as pathloss, rms delay spread, and so on. Map-based channel modelling, on the other hand, is focused on the geographical architecture of a specific location. When we derive a channel model for a specific frequency band, we use these two models. We'll focus on channel modelling for millimetre wave communication, which is a promising contender for enabling 5G communications.

When interacting with metal, glass, and other surfaces, mm Wave signals have a higher reflectivity and are more easily absorbed by air, rain, and other elements than signals in lower frequency bands. Furthermore, its diffraction ability is reduced. As we aforementioned channel modelling approaches fall into one of three categories: analytical modelling, map-based modelling, and stochastic modelling. Analytical modelling uses a set of established parameters, whereas ray-tracing-based modelling focuses on locating signal paths in the environment. For applications such as massive MIMO and enhanced beam formation, the map-based model delivers precise and realistic spatial channel features.


Analytical Channel Modelling:

The appropriate statistical parameters such as number of pathways, root-mean-square (RMS) delay spread, path loss, and shadowing of the propagation channel can be produced using the analytical modelling approach, which is based on the data of measurements or statistical characteristics of the scenario. Without taking into account the specifics of the environment, this method can be represented using a given set of parameters. As a result, in an anisotropic radio environment, the analysis result may be inaccurate.


Map-based Channel Modelling:

For applications such as massive MIMO and sophisticated beamforming, the map-based model delivers precise and realistic spatial channel features. It automatically generates spatially consistent modelling for difficult instances like D2D and V2V links with dual-end mobility. Ray tracing is used in conjunction with a reduced 3D geometric description of the propagation environment to create the model. Diffraction, specular reflection, diffuse scattering, and blocking are all considered important propagation mechanisms. The electromagnetic material properties of building walls are modelled as rectangular surfaces. There is no explicit path loss model in the map-based model. Instead, path loss, shadowing, and other propagation features are defined by the map layout and, optionally, a random distribution of objects that account for people, automobiles, and trees, among other things.


General description:

A geometrical representation of the environment – such as a map or a building layout expressed in a three-dimensional (3D) Cartesian coordinate system – is required for any ray-tracing-based model. It is not necessary to have a high level of map detail. Building walls and potentially other fixed structures are the only things that need to be defined.

Here in the above figure signal reaches to cell phone via MPCs where paths are either reflected or reflected. The probability of LOS path decreases as operating frequency increases.


Creation of the environment:

When walls are modelled as rectangular surfaces, a 3D map comprising coordinate points of wall corners is constructed. Both outside and indoor maps, as well as the position of indoor walls within a building block, are defined in the outdoor-to-indoor instance. The map is then strewn with random scattering/shadowing objects that depict persons, automobiles, and other items. The item positions can then be defined either based on a known regular pattern, such as the spectator seats in a stadium, or randomly selected from a uniform distribution with a set situation dependent density.


Determination of propagation pathways:

Direct, diffraction, specular reflection, and diffuse scattering must all be represented for this purpose, as seen in Figure above. The diffuse scattering caused by rough surfaces is compensated for by placing point scatterers on the external walls' surface.

Here in millimeter wave channel modelling map-based channel modeling is very important because here types of obstacle's surfaces, constructional architecture of a area, angle of arrival and departure (AoA and AoD) matters a lot.


Stochastic Channel Modelling:

The stochastic model is based on the Geometry-based Stochastic Channel Models (GSCMs) family, which includes 3GPP 3D Channel Models. It concentrates on path loss, the sum-of-sinusoids approach for calculating large-scale parameters, and so on.

#beamforming

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

Online Channel Impulse Response Simulator

  Fundamental Theory of Channel Impulse Response The fundamental theory behind the channel impulse response in wireless communication often involves complex exponential components such as: \( h(t) = \sum_{i=1}^{L} a_i \cdot \delta(t - \tau_i) \cdot e^{j\theta_i} \) Where: \( a_i \) is the amplitude of the \( i^{th} \) path \( \tau_i \) is the delay of the \( i^{th} \) path \( \theta_i \) is the phase shift (often due to Doppler effect, reflection, etc.) \( e^{j\theta_i} \) introduces a phase rotation (complex exponential) The convolution \( x(t) * h(t) \) gives the received signal So, instead of representing the channel with only real-valued amplitudes, each path can be more accurately modeled using a complex gain : \( h[n] = a_i \cdot e^{j\theta_i} \) Channel Impulse Response Simulator Input Signal (Unit Impulse x[n]) Multipath Delays (samples): Path Ampli...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...