Skip to main content

Analog Communication Systems Project | With MATLAB Code



You can work on amplitude modulation (AM), frequency modulation (FM), or phase modulation (PM) based analog communication projects in analog communication projects. You've probably heard that each town and city has its own radio station. It's commonly referred to as an 'FM Radio Station.' Frequency modulation (FM) is the technology utilized to operate such radio stations. It has a frequency range of 90 to 108 MHz.

A high-frequency carrier is required to transmit any baseband signal. It's nearly difficult without a carrier. We've already talked about why modulation is so important. You are welcome to look through it. We modulate our original speech signal with a high-frequency carrier wave and change the frequency of the modulated carrier signal by the amplitude or voltage of the voice signal to transmit it.

For your information, a vocal transmission, for example, is first translated into an electric signal. It is now known that distinct voltage levels exist for different signals. Now, the carrier wave's frequency is varied by the voltage or current of voice signals, allowing us to transfer data through free space or air.

Now, for a better understanding, we'll go over basic mathematical concepts.

Vc = A*Sin(θ) = A* Sin (wt + Φ)

The above equation is a modulated signal notation, which shows that all signals have some common properties such as amplitude, frequency, and phase. Our portfolio in this article is frequency modulation or FM. So, in this case, we're primarily interested in the modulated signal's frequency component.

As the amplitude or voltage of the speech signal varies, the carrier signal's frequency swings in a certain range. In that instance, we see a certain level of frequency deviation.

For instance, we can represent it numerically as follows:

Fi = Fc + ΔFc

where Fi is the instantaneous frequency that the FM receiver receives. Fc is the carrier signal's frequency, and ΔFc is the frequency deviation which is basically responsible for carrying information.

Assume, for example, that you have a wideband FM signal.

The standard bandwidth of a wideband FM is 200 kHz. A frequency deviation of +/-75 kHz is used on both sides, as well as an extra guard band of 25 kHz, to protect the signal from interference from other radio stations.

Now the entire band will have the same appearance.

25 KHz + 75 KHz + 75 KHz + 25 KHz (guard band + frequency deviation (due to -75 KHz deviation + frequency deviation (due to +75 KHz deviation + guard band)

As previously stated, the bandwidth of the above FM channels is 200 KHz. Wideband FM has been demonstrated in the example above.


When the ratio of the highest to lowest operating frequency (positive frequency) is substantially more than one. Then it's known as a wideband signal. On the other hand, if the radio is close to 1, it is referred to as a narrowband signal.


For realistic FM broadcasting First, the microphone converts the original voice signal to an electrical signal, which is then passed via a pre-amplifier to amplify the millivolt signal into a stronger signal, which helps to enhance the signal-to-noise ratio. The next stage is to use an oscillator to generate a high-frequency carrier wave, which is then modulated by the baseband message or speech signal. Final amplifiers compensate for signal attenuation after it has passed through the modulation step. Finally, the signal is sent from the transmitter to free space or air. Read More...


MATLAB code for FM (Frequency Modulation) Signal




Output











Also read about

[1] Digital Communication Mini Projects
[2] More Wireless Communication Projects/Thesis ideas for Final Year Students [click here]

#analog and digital communication projects

<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for Constellation diagrams of ASK, FSK, and PSK 📚 Further Reading   MATLAB Script % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters numSymbols = 1000; % Number of symbols to simulate symbolIndices = randi([0 1], numSymbols, 1); % Random binary symbols (0 or 1) % ASK Modulation (BASK) askAmplitude = [0, 1]; % Amplitudes for binary ASK askSymbols = askAmplitude(symbolIndices + 1); % Modulated BASK symbols % FSK Modulation (Modified BFSK with 90-degree offset) fs = 100; % Sampling frequency symbolDuration = 1; % Symbol duration in seconds t = linspace(0, symbolDuration, fs*symbolDuration); fBase = 1; % Base frequency frequencies = [fBase, fBase]; % Same frequency for both % Generate FSK symbols with 90° phase offset fskSymbols = arrayfun(@(idx) ...     cos(2*pi*frequencies(1)*t) * (1-idx) + ...     ...

DSB-SC Modulation and Demodulation

📘 Overview 🧮 DSB-SC Modulator 🧮 DSB-SC Detector 🧮 Comparisons Between DSB-SC and SSB-SC 🧮 Q & A and Summary 📚 Further Reading   Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed. In the DSB-SC modulation, unlike in AM, the wave carrier is not transmitted; thus, much of the power is distributed between the sidebands, which implies an increase of the cover in DSB-SC, compared to AM, for the same power use. DSB-SC transmission is a special case of double-sideband reduced carrier transmission. It is used for radio data systems. This model is frequently used in Amateur radio voice communications, especially on High-Frequency ba...