Very compact antennas are used for 5G connectivity. Because 5G communication relies heavily on beamforming, antenna elements should theoretically be placed in half-wavelength intervals. u may be aware that 5G operates at sub-6 GHz frequencies, such as 3 to 4 GHz, whereas 4G LTE operated at frequencies between 1 and 3 GHz.
In smartphones, patched antennas are utilized as transmitter or receiver antennas. Using micro-strip patch antennas has several advantages. It is simple to install on the planner's surface. It takes up less space than other antennas, such as dipole antennae, in terms of area/volume. Micro-strip path antennas, on the other hand, are excellent for directivity gain and can be employed as a phased array.
We know that we won't be able to transmit a 5G signal omnidirectionally from an antenna. Due to the high path loss of the 5G frequency band, it is unable to reach the receiver with sufficient energy. As a result, we must send more energy to the intended device while reducing signal transmission in all other directions. In wireless communication, this process is known as beamforming.
More than one adjacent antenna is necessary to generate a beam, as we've discussed in previous articles, and MIMO can be employed for this. In this article, we'll show you why patch antennas are a good fit for 5G applications. Let's replace the MIMO antennas with micro-strip patch antennas. We know that 5G uses the millimeter wave frequency band, which has wavelengths ranging from 1 to 10 millimeters, which is a relatively short wavelength range.
Microstrip patch antennas are a major bonus in this case because they allow us to easily install antenna elements in half-wavelength intervals. We'll also be able to pack a lot of antennas into a small space, resulting in a massive MIMO system.
We already discussed beam steering, precoding techniques, and other beamforming-related topics in the previous posts. We can easily use beam steering and use the precoding method for high-gain beamforming in a micro-strip patch antenna panel.
Let me give you an example to help you understand. In a micro-strip antenna panel, there are 8*8 array antenna elements. Because a higher frequency band travels a shorter distance than a lower frequency band, we form a beam by sending the same signal from eight adjacent antenna elements. As a result, we may expect 8 distinct independent beams (as there are a total of 64 antenna elements) generating vectors that can be steered in any direction or within a certain angular range or segment.
We now know that eight independent communication paths can connect with other MIMO. Now, if we wish to communicate with 8 data streams or paths at the same time, we must look for interference between them. The precoding approach reduces interference between them.
We may conclude from the above discussion that micro-strip patch antennas are suited for 5G applications because of their small size, directional nature (radiation pattern), and ability to be employed as a phased array, which is ideal for beam steering and channel estimation.
Next Page>>