Skip to main content

Antennas for 5G | Future scope of patch antennas that are used for 5g Applications



Very compact antennas are used for 5G connectivity. Because 5G communication relies heavily on beamforming, antenna elements should theoretically be placed in half-wavelength intervals. u may be aware that 5G operates at sub-6 GHz frequencies, such as 3 to 4 GHz, whereas 4G LTE operated at frequencies between 1 and 3 GHz.

In smartphones, patched antennas are utilized as transmitter or receiver antennas. Using micro-strip patch antennas has several advantages. It is simple to install on the planner's surface. It takes up less space than other antennas, such as dipole antennae, in terms of area/volume. Micro-strip path antennas, on the other hand, are excellent for directivity gain and can be employed as a phased array.

We know that we won't be able to transmit a 5G signal omnidirectionally from an antenna. Due to the high path loss of the 5G frequency band, it is unable to reach the receiver with sufficient energy. As a result, we must send more energy to the intended device while reducing signal transmission in all other directions. In wireless communication, this process is known as beamforming.

More than one adjacent antenna is necessary to generate a beam, as we've discussed in previous articles, and MIMO can be employed for this. In this article, we'll show you why patch antennas are a good fit for 5G applications. Let's replace the MIMO antennas with micro-strip patch antennas. We know that 5G uses the millimeter wave frequency band, which has wavelengths ranging from 1 to 10 millimeters, which is a relatively short wavelength range.

Microstrip patch antennas are a major bonus in this case because they allow us to easily install antenna elements in half-wavelength intervals. We'll also be able to pack a lot of antennas into a small space, resulting in a massive MIMO system.

We already discussed beam steering, precoding techniques, and other beamforming-related topics in the previous posts. We can easily use beam steering and use the precoding method for high-gain beamforming in a micro-strip patch antenna panel.

Let me give you an example to help you understand. In a micro-strip antenna panel, there are 8*8 array antenna elements. Because a higher frequency band travels a shorter distance than a lower frequency band, we form a beam by sending the same signal from eight adjacent antenna elements. As a result, we may expect 8 distinct independent beams (as there are a total of 64 antenna elements) generating vectors that can be steered in any direction or within a certain angular range or segment.

We now know that eight independent communication paths can connect with other MIMO. Now, if we wish to communicate with 8 data streams or paths at the same time, we must look for interference between them. The precoding approach reduces interference between them.

We may conclude from the above discussion that micro-strip patch antennas are suited for 5G applications because of their small size, directional nature (radiation pattern), and ability to be employed as a phased array, which is ideal for beam steering and channel estimation.
Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...