Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Routing vs Switching | IPv4 vs IPv6


◈ What is Routing & Switching
◈ IPv4 vs IPv6

Routing is the process of sending data from a source to a destination along a specific path. For example, your device is linked to a nearby router, and the device to which you wish to transfer data is likewise connected to a nearby router, with some intermediate routers in between. That is all there is to it. By which device routing is processed is called router. Routing takes place at the network layer.

Switching, on the other hand, is a method of sending data from a source to a destination by splitting it into many frames and sending it through different ports of a router rather than broadcasting to all ports. As a result, it is common for frames or data packets to arrive at their intended address via several routing paths. It is not necessary for all packets to arrive at receiver thru same path in a datagram network or packet switching network (where routers construct paths for data transit), nor is it necessary for all packets to arrive in the same order.


Switching:

Assume you only have two computers to connect with. Then we can use a cable to link two PCs. Assume, however, that there are more than two computers and that we need to connect them. Mesh connections (where each device is connected to others), ring connections (where each device is connected to a central computer), and bus connections (where each device is connected to a common bus) are some of the solutions available. However, when billions of devices are connected to a network, those strategies are ineffective. We normally look for the most cost-effective option, such as switching in this case.

Circuit Switching:

For better explanation, I'll use a simple example of switching. Each channel in 2G GSM has a bandwidth of 200 KHz. TDM (time division multiplexing) switching allows each channel to handle up to eight devices at once.


We've depicted a TDM swathing in which each device is connected to a single channel by distinct time slots in the diagram above. The multiplexed signal can then be transmitted over the same route that carries data for N users. If B is a receiver device, the sent signal is routed through a nearby router, where the multiplexed signal is demultiplexed so that B receives the right signal. For this purpose, IP addresses are important since the header contains the source and destination addresses, and the signal may be routed through many routers to reach the intended user. Circuit switching is seen in the above example. Packet switching is another major switching method for datagram networks.

Packet Switching:

Circuit switching is not the same as packet switching. The data is separated into packets when packet switching is used. It is also not required that all packets be sent over the same path. When circuit switching is used, the communication path is fixed once it is established. When packet switching is used, each packet is delivered to the receiver over numerous paths.


Let's suppose we need to deliver data from a device connected to Router A and transfer it to a device connected to Router B in the diagram above. For packet switching in a datagram network, the entire data is framed/divided into different blocks (technically, packets/ bytes), and then packets 1,2,3,4&5 are ready to be transferred. Assuming a router (nearby router) has three ports, packets 1 and 2 are sent through port 1, packets 2 and 3 are sent through port 3, while packets 4 and 5 are waiting to be transferred. Once any port becomes free, packet 4 will be sent. Packet 5 follows the same procedure.

Routing:

We've previously gone over some of the most important aspects of routing. Routing is required whenever two devices need to be connected over the internet. And everything takes place at the network layer, using a transmission protocol such as TCP IP. The data layer's role is to frame data. Each data to be sent is given a header and a data portion. We discussed the header portion, which contains the source and destination addresses so that data may be transmitted to the correct location. Routing is not required when communicating between two devices on the same network. It'll be handled by the data layer. Routing is necessary if we need to send data to another network.

In plain languages, when we connect to a router locally, such as in our homes or offices, and there are several users connected to the same router, the router allocates different bandwidth to each user, and users connect to the network via different ports of the same router. When you send a request, the signal travels through a specific port, and when the response from the core network / server arrives, switching is in charge of delivering the correct data packets / information to the correct user, rather than broadcasting to all users connected to the same router's different ports.

When you send mail to a buddy who lives hundreds or thousands of kilometres away, routing is critical in determining the shortest or most appropriate communication or message delivery path between you and your friend. Between you and your buddy, there are many intermediate networks. Routing is not required if you and your friend are both connected to the same network.

Also read about
[1] IP v4 vs IPv6
#What switches does the 5g network work on it?

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

FFT Magnitude and Phase Spectrum using MATLAB

MATLAB Code clc; clear; close all; % Parameters fs = 100;           % Sampling frequency t = 0:1/fs:1-1/fs;  % Time vector % Signal definition x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t); % Compute Fourier Transform y = fft(x); z = fftshift(y); % Frequency vector ly = length(y); f = (-ly/2:ly/2-1)/ly*fs; % Compute phase phase = angle(z); % Plot magnitude of the Fourier Transform figure; subplot(2, 1, 1); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude of Fourier Transform'); grid on; % Plot phase of the Fourier Transform subplot(2, 1, 2); stem(f, phase, 'b'); xlabel('Frequency (Hz)'); ylabel('Phase (radians)'); title('Phase of Fourier Transform'); grid on;   Output  Copy the MATLAB Code from here % The code is written by SalimWireless.Com clc; clear; close all; % Parameters fs = 100; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector % Signal definition x = cos(2*pi*15*t -

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = hx + n ... (i) The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2. Additive White Gaussian Noise (AWGN) The mathematical effect involves adding Gauss

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi