Skip to main content

Comparison of FDMA, TDMA, & CDMA | Methods of Transmitting and Receiving ...




Two key modulation techniques utilized in 2G GSM are TDM and FDM. The advantages of modulation techniques have already been explored. TDM and FDM allow several data streams to pass through the channel between transmitter and receiver at the same time. We can figure out what they are based on their names. For example, each GSM channel has a bandwidth of 200 KHz. Furthermore, a single channel can connect up to eight users at the same time.
 

1. FDMA:


Frequency division multiplexing access (FDMA) is an acronym for frequency division multiplexing. The entire available bandwidth is subdivided into several sections using this strategy. Each sub band is assigned to a certain device. It's also feasible to apply TDMA on each of the sub bands separately.
 

2. TDMA:


Time division multiplexing access (TDMA) is an acronym for time division multiplexing. TDMA is a modulation technology that allows us to connect many devices to a base station or access point by providing them distinct time slots. We use a rotator in TDMA to establish distinct time slots, and then we use TDMA to link multiple devices. For example, each 2G GSM channel has a bandwidth of 200 KHz, and we connect eight users using TDMA or various time slots.
 

3. CDMA:[↗]

Code division multiplexing access (CDMA) is the abbreviation for code division multiplexing access. 3G technology was the first to use this strategy. Different forms of coding are used in code division multiplexing access. So, the term "CDMA" can refer to a variety of communication protocols. The fundamental idea is to give each mobile phone a special code. These codes are all mutually orthogonal to one another. For example, a base station (BS) emits a code, which many devices attempt to decode. The signal will only be received by the intended user; it will be discarded by others. Simply put, we can say that there is a conference room and that there are numerous individuals speaking different languages in it. Now that one of the speakers is speaking Chinese, only those who are familiar with the language will be able to understand. A person who does not speak Chinese will be unable to comprehend a single word. The same thing happens when users or linked devices have access to code division multiplexing.

Each user in this scenario has access to the full frequency band and is free to transmit at any moment. In comparison to FDMA and TDMA, CDMA is hence more flexible. Other CDMA plans make advantage of system resources to provide multiple channels.

Spread spectrum techniques include the frequency-hopping CDMA technology. Pseudorandom (PN) codes assigned to each user are used to modulate the signal that will be broadcast. This is comparable to FDMA because each user will be transmitting at a separate frequency as a result. As the PN code evolves, the user will eventually be broadcasting over a different carrier frequency for each time slot, which is akin to TDMA.
[Click here to read about CDMA in details]

4. Comparison of TDMA & FDMA:


1.In FDM, you can transmit and receive in different bands at the same time.


2.In TDM, transmission and reception take place on the same frequency range, but at different times.


3.For FDM, guard frequency bands are necessary, resulting in system overhead.


4.Spectral inefficiency is required for TDM guard time slots.


5.TDM outperforms FDM in terms of noise resistance.




We can conclude from the three multiplexing techniques mentioned above that we can send multiple data streams utilizing those multiplexing techniques over a single signal path / route. It is also clear that while using the same transmission line, desired users can access independent signals.


5. Advantages of CDMA Technique over FDMA and TDMA

The use of a CDMA system has some key benefits. There may be excessive multipath propagation when signals are sent across a random medium. This phenomenon results in small-scale fading. A frequency selective channel is one sort of fading channel that attenuates some frequencies more than others. Because of this, received signal strength inside this kind of channel can fluctuate significantly. 

A user in a poor frequency band will only use that band for a brief amount of time in an FH-CDMA scheme. Therefore, CDMA systems can aid in combating fading channels. It is a benefit of a CDMA

Another advantage to a CDMA code is the privacy that it can afford a user. Any receiver can pick up the same signal that a user is transmitting and receiving when the user has a stable frequency band.


Read more about

[1] Click here to read about CDMA in details

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical BER vs SNR for m-ary PSK and QAM

Relationship Between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) The relationship between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) is a fundamental concept in digital communication systems. Here’s a detailed explanation: BER (Bit Error Rate): The ratio of the number of bits incorrectly received to the total number of bits transmitted. It measures the quality of the communication link. SNR (Signal-to-Noise Ratio): The ratio of the signal power to the noise power, indicating how much the signal is corrupted by noise. Relationship The BER typically decreases as the SNR increases. This relationship helps evaluate the performance of various modulation schemes. BPSK (Binary Phase Shift Keying) Simple and robust. BER in AWGN channel: BER = 0.5 × erfc(√SNR) Performs well at low SNR. QPSK (Quadrature...