Skip to main content

Comparison of FDMA, TDMA, & CDMA | Methods of Transmitting and Receiving ...




Two key modulation techniques utilized in 2G GSM are TDM and FDM. The advantages of modulation techniques have already been explored. TDM and FDM allow several data streams to pass through the channel between transmitter and receiver at the same time. We can figure out what they are based on their names. For example, each GSM channel has a bandwidth of 200 KHz. Furthermore, a single channel can connect up to eight users at the same time.
 

1. FDMA:


Frequency division multiplexing access (FDMA) is an acronym for frequency division multiplexing. The entire available bandwidth is subdivided into several sections using this strategy. Each sub band is assigned to a certain device. It's also feasible to apply TDMA on each of the sub bands separately.
 

2. TDMA:


Time division multiplexing access (TDMA) is an acronym for time division multiplexing. TDMA is a modulation technology that allows us to connect many devices to a base station or access point by providing them distinct time slots. We use a rotator in TDMA to establish distinct time slots, and then we use TDMA to link multiple devices. For example, each 2G GSM channel has a bandwidth of 200 KHz, and we connect eight users using TDMA or various time slots.
 

3. CDMA:[↗]

Code division multiplexing access (CDMA) is the abbreviation for code division multiplexing access. 3G technology was the first to use this strategy. Different forms of coding are used in code division multiplexing access. So, the term "CDMA" can refer to a variety of communication protocols. The fundamental idea is to give each mobile phone a special code. These codes are all mutually orthogonal to one another. For example, a base station (BS) emits a code, which many devices attempt to decode. The signal will only be received by the intended user; it will be discarded by others. Simply put, we can say that there is a conference room and that there are numerous individuals speaking different languages in it. Now that one of the speakers is speaking Chinese, only those who are familiar with the language will be able to understand. A person who does not speak Chinese will be unable to comprehend a single word. The same thing happens when users or linked devices have access to code division multiplexing.

Each user in this scenario has access to the full frequency band and is free to transmit at any moment. In comparison to FDMA and TDMA, CDMA is hence more flexible. Other CDMA plans make advantage of system resources to provide multiple channels.

Spread spectrum techniques include the frequency-hopping CDMA technology. Pseudorandom (PN) codes assigned to each user are used to modulate the signal that will be broadcast. This is comparable to FDMA because each user will be transmitting at a separate frequency as a result. As the PN code evolves, the user will eventually be broadcasting over a different carrier frequency for each time slot, which is akin to TDMA.
[Click here to read about CDMA in details]

4. Comparison of TDMA & FDMA:


1.In FDM, you can transmit and receive in different bands at the same time.


2.In TDM, transmission and reception take place on the same frequency range, but at different times.


3.For FDM, guard frequency bands are necessary, resulting in system overhead.


4.Spectral inefficiency is required for TDM guard time slots.


5.TDM outperforms FDM in terms of noise resistance.




We can conclude from the three multiplexing techniques mentioned above that we can send multiple data streams utilizing those multiplexing techniques over a single signal path / route. It is also clear that while using the same transmission line, desired users can access independent signals.


5. Advantages of CDMA Technique over FDMA and TDMA

The use of a CDMA system has some key benefits. There may be excessive multipath propagation when signals are sent across a random medium. This phenomenon results in small-scale fading. A frequency selective channel is one sort of fading channel that attenuates some frequencies more than others. Because of this, received signal strength inside this kind of channel can fluctuate significantly. 

A user in a poor frequency band will only use that band for a brief amount of time in an FH-CDMA scheme. Therefore, CDMA systems can aid in combating fading channels. It is a benefit of a CDMA

Another advantage to a CDMA code is the privacy that it can afford a user. Any receiver can pick up the same signal that a user is transmitting and receiving when the user has a stable frequency band.


Read more about

[1] Click here to read about CDMA in details

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

 There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 1. Equal gain combining method We add the correlated data streams from different antennas in the equal gain combining method. Then we multiply the resultant data with (1/(number of antennas)) For example, for two antenna gain-combining  If the received symbols are y1 and y2, then  Equal combing gain, y_egc = 0.5 * (y1 + y2) 2. Maximum ratio combining method We multiply the individual data streams with weights in the maximum ratio combining method. More weightage is multiplied by those data streams with maximum {|h|^2}, where h denotes the channel impulse response. And less weightage is multiplied by those data streams with corresponding small value of  {|h|^2}.  Then we sum the data streams to improve SNR. In the case of Maximum Ratio Combining, if y1 an...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

MATLAB code for GMSK

  Copy the MATLAB code from here  % The code is developed by SalimWireless.com clc; clear; close all; % Parameters samples_per_bit = 36; bit_duration = 1; num_bits = 20; sample_interval = bit_duration / samples_per_bit; time_vector = 0:sample_interval:(num_bits * bit_duration); time_vector(end) = []; % Generate and modulate binary data binary_data = randi([0, 1], 1, num_bits); modulated_bits = 2 * binary_data - 1; upsampled_signal = kron(modulated_bits, ones(1, samples_per_bit)); figure; plot(time_vector, upsampled_signal); title('Message Signal'); % Apply Gaussian filter filtered_signal = conv(GMSK_gaussian_filter1(bit_duration, samples_per_bit), upsampled_signal); filtered_signal = [filtered_signal, filtered_signal(end)]; figure; plot(filtered_signal); title('Filtered Signal'); % Integration & GMSK modulation integrated_signal = cumsum(filtered_signal); gmsk_signal = exp(1i * integrated_signal); % Plotting the real and imaginary parts of the GMSK signal ...