Skip to main content

HomePage

 

(Search any topic)


Search any topic on the whole website
  1. Modulation
  2. Signal Processing
  3. Beamforming
  4. MATLAB
  5. 5G
  6. Wireless
  7. GATE-ESE-NET
  8. Programming
  9. Telecommunication
  10. Channel Impulse Response
  11. Computer Networks
  12. MIMO - Multiple Input Multiple Output
  13. Filters
  14. Millimeter wave
  15. Python 
  16. Constellation Diagrams
  17. BER vs SNR
  18. Electronics Industry
  19. Fourier Series and Fourier Transform
  20. Frequency bands
  21. Wireless Communication Q & A
  22. ASK FSK PSK
  23. Channel Model
  24. IoTs
  25. UWB
  26. pskmod
  27. Antenna
  28. Applications and Games
  29. C Programming
  30. Channel Estimation
  31. Equalizers
  32. Gaussian Random Variable
  33. Projects
  34. Q & A
  35. QAM
  36. Transform
  37. Fading
  38. Microwave
  39. News about 5G
  40. PAM
  41. Python Matrix Operations
  42. SSC Exam
  43. Web Design
  44. WordPress
  45. Ionospheric Communication
  46. JavaScript
  47. MATLAB Simulink
  48. Mobile & Accessories
  49. OFDM
  50. Signal Processing for 5G
  51. Analog Circuits
  52. Cell Towers
  53. Computer
  54. Digital Circuits
  55. Fourier Series
  56. HomePage
  57. Information and Coding Theory
  58. Laplace Transform
  59. MySQL
  60. Node.js
  61. Search
  62. ShareLinkF / Generate QR
  63. Z Transform

 

It's an Electronic Communication Systems-focused technical blog. In this blog, we'll discuss Electronic communication systems, Wireless Communication, Telecommunication, 2G, 3G, 4G, 5G [Read More], IoTs, MIMO, Beamforming, Millimeter wave, UWB, Microwave links, Wireless channels, Modulation techniques, GATE ESE, UGC-NET, Project / Thesis ideas [↗], Electronics industry, Programming, Web design, Short term courses, etc.



Ask your questions in the forum [↗]. We post articles about wireless communication technologies such as Wireless, 5G, UWB, Millimeter wave, Beamforming, IoTs, and MATLAB. Web design, WordPress, and other related topics are also significant components of our site.

 


Constellation Diagrams

Digital communication is complete with constellation diagrams. If you have a digital communication interview, the interviewer will ask you to draw a constellation diagram.

Ber vs. S.NR

The relationship between BER and SNR reveals how many transmitted bits from a communication system are corrupted. Did you know? Bit error rates for practical communication systems are close to 10-5 or better.




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation

   Pulse Width Modulation (PWM) MATLAB Script clc; clear all; close all; fs=30; %frequency of the sawtooth signal fm=3; %frequency of the message signal sampling_frequency = 10e3; a=0.5; % amplitide t=0:(1/sampling_frequency):1; %sampling rate of 10kHz sawtooth=2*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave subplot(4,1,1); plot(t,sawtooth); % plotting the sawtooth wave title('Comparator Wave'); msg=a.*sin(2*pi*fm*t); %generating message wave subplot(4,1,2); plot(t,msg); %plotting the sine message wave title('Message Signal'); for i=1:length(sawtooth) if (msg(i)>=sawtooth(i)) pwm(i)=1; %is message signal amplitude at i th sample is greater than %sawtooth wave amplitude at i th sample else pwm(i)=0; end end subplot(4,1,3); plot(t,pwm,'r'); title('PWM'); axis([0 1 0 1.1]); %to keep the pwm visible during plotting. %% Demodulation % Demodulation: Measure the pulse width to reconstruct the signal demodulated_signal = zeros(size(msg)); for i = 1:leng...

High Level and Low Level Modulation

High Level and Low Level Modulation You know for wireless communication is suitable for long distance communication. In wireless, for data transmission modulation become essential to avoid interference and to reduce antenna size significantly. Especially, in modulation process, we translate the low frequency baseband signal to higher frequency by modulating with high frequency carrier signal. For a typical communication system we generate the high frequency (carrier) signal by using local oscillator. Source signal or message signal is modulated with local oscillator. Then modulated signal is transmitted thru antenna.  Low Level Modulation In low level modulation, message signal is modulated with local  oscillator  that produces high frequency. Then the frequency of message signal is translated to much higher frequency. Then the modulated signal passes thru wideband amplifier. High Level Modulation In high level modulation, source or message signal is passed thru wideband ...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...