Skip to main content

HomePage

 

(Search any topic)


Search any topic on the whole website
  1. Modulation
  2. Signal Processing
  3. Beamforming
  4. MATLAB
  5. 5G
  6. Wireless
  7. GATE-ESE-NET
  8. Programming
  9. Telecommunication
  10. Channel Impulse Response
  11. Computer Networks
  12. MIMO - Multiple Input Multiple Output
  13. Filters
  14. Millimeter wave
  15. Python 
  16. Constellation Diagrams
  17. BER vs SNR
  18. Electronics Industry
  19. Fourier Series and Fourier Transform
  20. Frequency bands
  21. Wireless Communication Q & A
  22. ASK FSK PSK
  23. Channel Model
  24. IoTs
  25. UWB
  26. pskmod
  27. Antenna
  28. Applications and Games
  29. C Programming
  30. Channel Estimation
  31. Equalizers
  32. Gaussian Random Variable
  33. Projects
  34. Q & A
  35. QAM
  36. Transform
  37. Fading
  38. Microwave
  39. News about 5G
  40. PAM
  41. Python Matrix Operations
  42. SSC Exam
  43. Web Design
  44. WordPress
  45. Ionospheric Communication
  46. JavaScript
  47. MATLAB Simulink
  48. Mobile & Accessories
  49. OFDM
  50. Signal Processing for 5G
  51. Analog Circuits
  52. Cell Towers
  53. Computer
  54. Digital Circuits
  55. Fourier Series
  56. HomePage
  57. Information and Coding Theory
  58. Laplace Transform
  59. MySQL
  60. Node.js
  61. Search
  62. ShareLinkF / Generate QR
  63. Z Transform

 

It's an Electronic Communication Systems-focused technical blog. In this blog, we'll discuss Electronic communication systems, Wireless Communication, Telecommunication, 2G, 3G, 4G, 5G [Read More], IoTs, MIMO, Beamforming, Millimeter wave, UWB, Microwave links, Wireless channels, Modulation techniques, GATE ESE, UGC-NET, Project / Thesis ideas [↗], Electronics industry, Programming, Web design, Short term courses, etc.



Ask your questions in the forum [↗]. We post articles about wireless communication technologies such as Wireless, 5G, UWB, Millimeter wave, Beamforming, IoTs, and MATLAB. Web design, WordPress, and other related topics are also significant components of our site.

 


Constellation Diagrams

Digital communication is complete with constellation diagrams. If you have a digital communication interview, the interviewer will ask you to draw a constellation diagram.

Ber vs. S.NR

The relationship between BER and SNR reveals how many transmitted bits from a communication system are corrupted. Did you know? Bit error rates for practical communication systems are close to 10-5 or better.




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory of Pulse Amplitude Moduation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

Definition of the Fourier Series

  1. Introduction Most of the phenomena studied in the domain of Engineering and Science are periodic in nature. For instance, current and voltage in an alternating current circuit. These periodic functions could be analyzed into their constituent components (fundamentals and harmonics) by a process called Fourier analysis. A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. Fourier series is used to describe a periodic signal in terms of cosine and sine waves. In other words, it allows us to model any arbitrary periodic signal with a combination of sines and cosines.      Fig: Sine Wave       Fig: Triangular Wave    Fig: Sawtooth Wave      Fig: Square Wave   2. The common form of the Fourier series Sinusoidal functions are periodic over 2Ï€ angular distance. For a perio...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...