Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Analog Beamforming vs Digital beamforming



1. Analog Beamforming:

Beamforming is a method of focusing a signal in a certain direction to provide sufficient signal strength at the receiver end of the communication process. We normally require more than one closely located antenna to form a beam in a specific direction and focus the resultant signal from antennas to use beam forming. We can also use a phase shifter or PSs to control the phases of a signal. We employ MIMO (multiple input multiple output antenna) [↗] to provide beam forming. In a MIMO system, antennas are normally positioned in a half-wavelength interval of the operating frequency.


We commonly employ beam forming when we need to send a signal over a great distance (e.g., for radar communication) and omnidirectional transmission isn't feasible. On the other hand, we can use beam forming to extend the range of our signal without boosting TX power.


Similarly, 5G communication [Read More] makes advantage of an incredibly high frequency [↗]. As a result, it suffers from severe path loss [↗], and its short wavelength is easily absorbed by air gases, vapor, and other particles. With sufficient power, such an extremely high-frequency band can only go a short distance. As a result, we use beam forming to cover greater distances. We get a stronger and narrower beam by increasing the number of antennas without raising the TX power. It is an important advantage of beamforming.

There are several methods of beam formation, but they are usually divided into three categories: 1. Analog beam forming 2. Digital Beamforming 3. Hybrid Beamforming. In analog beam formation, the beam is steered at both the transmitter and receiver end, and the best beam pairs are selected for communication. More simply, we aim to send signals at varying angles of arrival range, or AOA, from the transmitter side. We do the same thing on the receiver side, then only connect the best beams from both the transmitter and receiver sides. We can only change the phases (or, to put it another way, the direction of signal transmission) of a signal in analog beam forming, and there is only one data stream between the transmitter and receiver.
 
analog beamforming
Get MATLAB Code for Analog and Digital Beamforming


The number of antennas on both the transmitter and receiving sides may be seen in the diagram above. To form a beam, more than one neighboring antenna is required, as previously stated. The fact that there is just one RF Chain on both the transmitter and receiver sides is a crucial aspect of analog beam formation. The number of RF chains equals the number of simultaneous data streams accessible between the transmitter and receiver. In the diagram above, we steer the beam at the transmitter to find the optimal beam between the transmitter and the receiver, while the receiver transmits in an omnidirectional manner. The same thing happens at the receiver's end, or the receiver tries directional beams while the transmitter radiates in an omnidirectional manner. Then, using adequate feedback, the best beam pairs from both sides are connected. RF chains contain mixers, power amplifiers, etc.

In the following chapters, we'll look into digital beam forming, which allows multiple data streams to be sent and received simultaneously. We'll also talk about canceling interference between many devices and canceling interference between simultaneous data streams.



2. Digital Beamforming:

Unlike analog pre-coding, we can send signals with a variety of phases and amplitudes. Different phases signify different things, such as the ability to steer the beam in different directions, which is also accessible for analog beam formation. On the other side, we can also regulate the transmitted signal's amplitude. If we need to reduce the signal's amplitude in a specific antenna element, we can easily do it.

The signal that was received is denoted by

y=√pHDs + n
where, p=average received power
H=channel matrix
D= digital or baseband pre-coder
s= symbol vector
n = additive white Gaussian noise

Each antenna is connected to a distinct transmit and receive (TR) module or RF chain in the system diagram below.


analog beamforming

Fig: Digital Beamforming


We know that point-to-point communication between MIMO is conceivable, such as h11, h12, h22, and so on. For example, 'h22' denotes channel gain or the link between the second antenna on the transmitter and the second antenna on the receiver. 


Also Read about

[1] What is the process of beamforming in MIMO or massive MIMO systems?

[2] Hybrid Beamforming 

[3] Mathematical aspects of beamforming in MIMO 

[4] Equations related to spectral efficiency in digital beamforming

[5] Equations related to spectral efficiency in hybrid beamforming   

[6]  MATLAB Codes for various types of beamforming

[7] Spatially Sparse Hybrid Precoding / beamforming

[8] What are the Precoding and Combining Weights / Matrices in a MIMO Beamforming System 

[9]  Beamforming in Wi-Fi

[10] Beamforming in Audio Signal Processing

[11] MIMO, massive MIMO, and Beamforming

more ...

# analog beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

MIMO, massive MIMO, and Beamforming

  The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via  beamforming  or directional transmission. 1. Some essential characteristics of a MIMO system 1.1. Spatial Division Multiplexing Access (SDMA) SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter. 1.2. Spatial Multiplexing Another essential ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

Calculation of SNR from FFT bins

  Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined using a modified Bessel function of the first kind.    Steps Set up the sampling rate and time vector Compute the FFT and periodogram Plot the periodogram using FFT Specify parameters for Kaiser window and periodogram Calculate the frequency resolution and signal...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

HomePage

  (Search any topic) Search any topic on the whole website Modulation Signal Processing Beamforming MATLAB 5G Wireless GATE-ESE-NET Programming Telecommunication Channel Impulse Response Computer Networks MIMO - Multiple Input Multiple Output Filters Millimeter wave Python   Constellation Diagrams BER vs SNR Electronics Industry Fourier Series and Fourier Transform Frequency bands Wireless Communication Q & A ASK FSK PSK Channel Model IoTs UWB pskmod Antenna Applications and Games C Programming Channel Estimation Equalizers Gaussian Random Variable Projects Q & A QAM Transform Fading Microwave News about 5G PAM Python Matrix Operations SSC Exam Web Design WordPress Ionospheric Communication JavaScript MATLAB Simulink Mobile & Accessories OFDM Signal Processing for 5G Analog Circuits Cell Towers Computer Digital Circuits Fourier Series HomePage Information and Coding Theory Laplace Transform MySQL Node.js Search ShareLinkF / Generate QR Z Transform ...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. clc;clear all;...