Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Delta Modulation & Demodulation


Delta Modulation & Demodulation Technique



Another name for delta modulation is a 1-bit quantizer. As a result, compared to PCM or DPCM, less bandwidth is needed here.


We know that bandwidth (BW),


BW = nfs/2 .........(1)




Where n = number of bits per sample


          fs = Frequency of Sampling





To avoid the cause of under-sampling, fs cannot be decreased in the above equation 1 to decrease bandwidth (BW). To retrieve the intended signal at the receiver side, we must keep our sample frequency at least two times the frequency of the message signal.



Alternatively, fs > 2fm



In this case, fm stands for message signal frequency, which is often the highest frequency available in message transmission.




However, in delta modulation, the bandwidth will be reduced to the smallest amount feasible by picking the lowest possible value of n, i.e. 1 bit/sample.


Assume that Rb = nfs is the data rate.


As a result, Rb = fs (if n=1 bit/sample)


So, in the delta modulation scheme, we can say,



Bit rate = Pulse rate = Sampling rate



Because we're only allocating 1 bit/sample, the number of levels is L = 2^(1) = 2. In general, the highest level is represented by '+∆', while the lowest level is represented by '-∆'. From the quantizer value we decide whether the sampling bit is '1' or '0'.










In delta modulation, we actually accomplish the following:



We compare the current sample value to the prior sample value in this modulation. When the difference (also known as "error") value exceeds the threshold value, the value is detected as "1." In the same way, if it goes below the threshold value, it will be '0'.







Diagram:











                                                                       Fig: Delta Modulation



Here, the input of the quantizer,


e(nTs) = m(nTs) – m^(nTs)


Where, m(nTs) = current sample

m^(nTs) = previous sample

The difference between the current sample value and the previous sample value (or, e(nTs)) is the quantizer's input. The modulated signal is represented as bit '1' if the difference value is greater than the threshold value (say, 0 Volt); otherwise, it is represented as bit '0'.


With the use of diagrams, we'll now discuss delta modulation (DM) and demodulation at the receiver side.



Delta Demodulation


Assume there are two levels (due to the one-bit quantizer) or that the quantizer step value is '+∆' and '–∆' on the negative side. '+∆' indicates a higher level, whereas '-∆' indicates a lower level.


Take a look at the quantizer diagram below. If the difference (or error value) between the current sample value and the prior sample value exceeds the threshold value, the sample will be converted to bit '1' (For your convenience, let's say, the threshold is 0 Volt). If the above-mentioned difference value is between 0 and + ∆ Volt, we convert it to bit '1'. Similarly, we translate to bit '0'  for values between 0 and - ∆ Volt.




Diagram of DM Quantizer:








DM Encoder:









DM Decoder at receiver side:








In decoding process, at t=0, sample value = 0

At, t = Ts, sample value = 0+∆ = +∆

      t = 2Ts, sample value = +∆ +∆ = +2∆

      t = 3Ts, sample value = +2∆ +∆ = +3∆

      t = 4Ts, sample value = +3∆ -∆ = +2∆

      t = 5Ts, sample value = +2∆ -∆ = +∆


Whenever the signal reaches the receiver it was 0, at t=0 & t< Ts; At t=Ts, we receive +∆. Now, the summation of the present sample value and previous sample value (which is '0' at the start) equals 0 +∆= +∆; At t=2Ts,  the sum of the current sample value and previous sample value = +∆ +∆ = +2∆ and so on (as shown in the above chart).

MATLAB Code for Delta Modulation and Demodulation

 
 
 

 
                                                                 (Get MATLAB Code)

Read also about

[1] MATLAB Code for Delta Modulation and Demodulation

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

BER vs SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in an AWGN channel is g

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK semilogy(EbNoVec_qpsk, ber_qpsk_theo, 's-', &#

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t