Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Delta Modulation & Demodulation


Delta Modulation & Demodulation Technique



Another name for delta modulation is a 1-bit quantizer. As a result, compared to PCM or DPCM, less bandwidth is needed here.


We know that bandwidth (BW),


BW = nfs/2 .........(1)




Where n = number of bits per sample


          fs = Frequency of Sampling





To avoid the cause of under-sampling, fs cannot be decreased in the above equation 1 to decrease bandwidth (BW). To retrieve the intended signal at the receiver side, we must keep our sample frequency at least two times the frequency of the message signal.



Alternatively, fs > 2fm



In this case, fm stands for message signal frequency, which is often the highest frequency available in message transmission.




However, in delta modulation, the bandwidth will be reduced to the smallest amount feasible by picking the lowest possible value of n, i.e. 1 bit/sample.


Assume that Rb = nfs is the data rate.


As a result, Rb = fs (if n=1 bit/sample)


So, in the delta modulation scheme, we can say,



Bit rate = Pulse rate = Sampling rate



Because we're only allocating 1 bit/sample, the number of levels is L = 2^(1) = 2. In general, the highest level is represented by '+∆', while the lowest level is represented by '-∆'. From the quantizer value we decide whether the sampling bit is '1' or '0'.










In delta modulation, we actually accomplish the following:



We compare the current sample value to the prior sample value in this modulation. When the difference (also known as "error") value exceeds the threshold value, the value is detected as "1." In the same way, if it goes below the threshold value, it will be '0'.







Diagram:











                                                                       Fig: Delta Modulation



Here, the input of the quantizer,


e(nTs) = m(nTs) – m^(nTs)


Where, m(nTs) = current sample

m^(nTs) = previous sample

The difference between the current sample value and the previous sample value (or, e(nTs)) is the quantizer's input. The modulated signal is represented as bit '1' if the difference value is greater than the threshold value (say, 0 Volt); otherwise, it is represented as bit '0'.


With the use of diagrams, we'll now discuss delta modulation (DM) and demodulation at the receiver side.



Delta Demodulation


Assume there are two levels (due to the one-bit quantizer) or that the quantizer step value is '+∆' and '–∆' on the negative side. '+∆' indicates a higher level, whereas '-∆' indicates a lower level.


Take a look at the quantizer diagram below. If the difference (or error value) between the current sample value and the prior sample value exceeds the threshold value, the sample will be converted to bit '1' (For your convenience, let's say, the threshold is 0 Volt). If the above-mentioned difference value is between 0 and + ∆ Volt, we convert it to bit '1'. Similarly, we translate to bit '0'  for values between 0 and - ∆ Volt.




Diagram of DM Quantizer:








DM Encoder:









DM Decoder at receiver side:








In decoding process, at t=0, sample value = 0

At, t = Ts, sample value = 0+∆ = +∆

      t = 2Ts, sample value = +∆ +∆ = +2∆

      t = 3Ts, sample value = +2∆ +∆ = +3∆

      t = 4Ts, sample value = +3∆ -∆ = +2∆

      t = 5Ts, sample value = +2∆ -∆ = +∆


Whenever the signal reaches the receiver it was 0, at t=0 & t< Ts; At t=Ts, we receive +∆. Now, the summation of the present sample value and previous sample value (which is '0' at the start) equals 0 +∆= +∆; At t=2Ts,  the sum of the current sample value and previous sample value = +∆ +∆ = +2∆ and so on (as shown in the above chart).

MATLAB Code for Delta Modulation and Demodulation

 
 
 

 
                                                                 (Get MATLAB Code)

Read also about

[1] MATLAB Code for Delta Modulation and Demodulation

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Raised Cosine Filter in MATLAB

  MATLAB Code clc; clear all; close all; Data_sym = [0 1 1 0 1 0 0 1]; M = 4; Phase = 0; Sampling_rate = 48e3; Data_Rate = 100; Bandwidth = 400; Upsampling_factor = Sampling_rate/Data_Rate; Rolloff = 0.4; Upsampled_Data = upsample(pskmod(Data_sym,M,Phase),Upsampling_factor); Pulse_shape = firrcos(2*Upsampling_factor,Bandwidth/2,Rolloff,Sampling_rate,'rolloff','sqrt'); Output What if we change the roll-off roll-off = 0.01 roll-off = 0.99 What if we change the bandwidth Bandwidth = 100 Hz     Bandwidth = 1000 Hz    What if we change the sampling rate  Sampling rate = 10 KHz  Sampling rate = 100 KHz Another MATLAB Code % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters fs = 1000; % Sampling frequency in Hz symbolRate = 100; % Symbol rate (baud) span = 6; % Filter span in symbols alpha = 0.25; % Roll-off factor for raised cosine filter % Generate random data symbols numSymbols = 100; % Number of symbols data = randi([0 1], num...

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Frequency Bands : EHF, SHF, UHF, VHF, HF, MF, LF, VLF and Their Uses

Frequency Bands EHF, SHF, UHF, VHF, HF, MF, LF... 1. Extremely High Frequency (EHF)30 - 300 GHz Uses 5G Networks 5G millimeter wave band , 6G and beyond (Experimental) RADAR, 2. Super High Frequency (SHF)3 - 30 GHz Uses Ultra-wideband (UWB , Airborne RADAR, Satellite Communication, Microwave Link Communication or SATCOM 3. Ultra High Frequency (UHF)300 - 3000 MHz Uses Satellite Communication, Television, surveillance, navigation aids Also, read important wireless communication terms 4. Very High Frequency (VHF)30 - 300 MHz Uses Television, FM broadcast, navigation aids, air traffic control, 5. High Frequency (HF)3 - 30 MHz Uses Telephone, Telegram and Facsimile, ship to coast, ship to aircraft communication, amateur radio, 6. Medium Frequency (MF)300 - 3000 KHz Uses coast guard communication, direction finding, AM broadcasting , maritime radio, 7. Low Frequency (LF)30 - 300 KHz Uses Radio beacons, Navigational Aids 8. Very Low Frequency (VLF)3 - 30 KHz...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK...