Skip to main content

5G : Theoretical Aspects | Frequency & Spectrum, Speed, Massive MIMO & OFDM


 

5G technology is a brand-new technology that will supply us with data rates that are significantly faster than 4G. It works at frequencies below 6 GHz in many countries. But in future, 5G frequencies will range from 26 to 100 GHz (These frequencies will be used for the 5G backhaul connection, and the end user will connect to a local cell tower utilizing somewhat lower frequency bands, specifically the 1 to 7 GHz bands.). With a 1 millisecond latency, it can deliver multi-gigabit per second data speeds (over the air). The millimeter wave band is chosen for 5G technology. However, 5G is currently being deployed in a large number of countries (almost 60+). Because it operates at the EHF band and has very low on-the-air latency, 5G will lead automation in industries, internet connected vehicles for smooth traffic, tele-medicine, augmented reality (AR), and virtual reality (VR). Three key technologies that will enable 5G are millimeter wave spectrum, OFDM, and massive MIMO. One of the most prominent reasons for developing 5G technology is that the number of internet-connected devices is continually expanding. Due of its large available bandwidth, 5G can manage more devices connecting to the BS at the same time. It has the capacity to handle thousands of devices per square kilometer that are connected to the 5G network.

What's new in 5G Technology

1. Enhanced Mobile Broadband (EMBB)

Users of 4G receive about 10 megabits per second, whereas 5G users receive 100 megabits per second. 5G is predicted to have a peak data throughput of 10 GBits/s, compared to 1 GBit/s for 4G. 5G is expected to have ten times the connection density of 4G. In comparison to 4G, 5G is expected to require less power.

2. Infrastructure for 5G Technology

Because it is a new technology, the infrastructure, equipment, and so on will be considerably different from the current network. In 5G, the coverage zone under a cell will be relatively tiny Because higher frequencies may only travel a limited distance in the earth's atmosphere. Tiny cells are commonly

Also read about what is 5g RAN?
 
referred to as a microcell. Gases, vapor, and other substances in the atmosphere will absorb very high frequency waves. It also has a hard time penetrating thick obstacles because to the increased frequency. As a result, the microcell will be mostly coupled to user devices like PDAs. After that, the microcells will be linked to BS. Then one BS will be connected to another BS through backhaul.

Backhaul is a concept in which a free space LOS channel connects two high BS towers. Simply said, the line of sight path of two high BSs will be unobstructed. However, because the millimeter wave spectrum has more bandwidth, it can accommodate higher data rates. In backhaul communication, the use of wires and fiber optics is reduced. As a result, communication is completely wireless.

3. Dense connectivity and large network capacity

5G is planned to support a connection density up to 10^(6) per square kilometer, which is about ten times more than 4G. The important technologies that will boost the capacity of the 5G network are discussed below.

4. Interference in 5G Network

Interference is a concern since the number of internet-connected gadgets per square kilometer is in the thousands. As a result, it is necessary to eliminate interferences between devices in a very intelligent manner. Precoding in massive MIMO and beamforming will be quite beneficial in this situation.

Key Technologies to enable 5G Technology

1. Extremely high frequency & bandwidth

2. OFDM

3. Massive MIMO

1. Extremely high frequency & bandwidth

In general millimetre wave band is suitable for high data rate communication. Although some frequency band, like, 60 GHz band is easily absorbed by oxygen in atmosphere, but it a good plus for indoor communication.

In comparison to 30 - 60 GHz electromagnetic bands, oxygen in the environment absorbs 60 GHz frequency more. As a result, the 60 GHz millimeter wave band is typically appropriate for indoor communication. Indoor communication has a much shorter range than outdoor communication. Because 60 GHz attenuates significantly with distance, it rarely interacts with outdoor frequency bands. In 60 GHz indoor communication, however, device to device or D2D interference is less. So, it is a big plus for that.

2. OFDM

We've already written an article about OFDM. We covered how OFDM suppresses inter-symbol interferences. When it comes to frequency selective fading, OFDM offers an excellent resistance. It also improves spectrum efficiency.

3. How Massive MIMO increases data rate in 5G

Massive MIMO is critical for 5G communications. Let's pretend that there's simply one transmitter and one reception antenna. Between the transmitter and the receiver, there is only one communication path or data stream accessible. There are four simultaneous paths or data streams between the transmitter and receiver if 2*2 MIMO is used. However, you should be aware that there are two independent paths that a transmitter and receiver could take. Similarly, there are three antennas on the transmitter side and two antennas on the receiver side for 3*2 MIMO. The maximum number of simultaneous data streams between TX and RX is defined as.


Number of simultaneous data stream = min ( M, N)

where, M = number of antennas at transmitter side
N= number of antennas at receiver side

More examples:
If 4*4 MIMO or number of transmitter antenna (antenna element) equal to 4 and number of receiver side antenna = 4; then number is simultaneous data stream between transmitter and receiver is 4.
Similarly, for 5*6 MIMO, number of simultaneous data stream = 5
for 6*6 MIO, it is 6.

In a huge MIMO system, we can get independent eigen pathways using SVD. Signal processing becomes more simple as a result of these independent paths.

Full-duplex radio technology in 5G


In full duplex radio, transmit and receive in the same frequency bands at the same time. Unlike FDD and TDD, when both links use the entire bandwidth at the same time. As a result, self-interference is a critical challenge in full duplex transmission.

#Documentation of next-g wireless communication 5g technology
How many companies have developed multibeam backhaul or point to multipoint wireless products in E band frequency?
What are the handover authentication protocols used in 5g network?




People are good at skipping over material they already know!

View Related Topics to

5G : Theoretical Aspects | Frequency & Spectrum, Speed, Massive MIMO & OFDM





5G : Theoretical Aspects | Frequency & Spectrum, Speed, Massive MIMO & OFDM

Related Topics -











Also Read About
#beamforming





CATEGORY LIST :

  1. Modulation
  2. Signal Processing
  3. MATLAB
  4. Beamforming
  5. 5G
  6. Wireless
  7. Channel Impulse Response
  8. Fourier Transform
  9. ASK FSK PSK
  10. MIMO - Multiple Input Multiple Output
  11. Constellation Diagrams
  12. GATE-ESE-NET
  13. Programming
  14. Telecommunication
  15. Computer Networks
  16. Filters
  17. Fourier Series and Fourier Transform
  18. BER vs SNR
  19. Millimeter wave
  20. Pulse Modulation
  21. Python
  22. Equalizers
  23. Gaussian Random Variable
  24. QAM
  25. Applications and Games
  26. Electronics Industry
  27. Frequency bands
  28. Singular Value Decomposition (SVD)
  29. Spectral density estimation
  30. Wireless Communication Q & A
  31. Channel Estimation
  32. Channel Model
  33. Convolution
  34. Image Processing
  35. IoTs
  36. UWB
  37. pskmod
  38. Antenna
  39. C Programming
  40. Projects
  41. Q & A
  42. Raised cosine filter
  43. Rayleigh Fading
  44. Transform
  45. Alamouti's Scheme
  46. Fading
  47. Microwave
  48. News about 5G
  49. OFDM
  50. PAM
  51. PCM
  52. Python Matrix Operations
  53. SSC Exam
  54. Web Design
  55. Wide Sense Stationary
  56. WordPress
  57. Ionospheric Communication
  58. JavaScript
  59. MATLAB Simulink
  60. Mobile & Accessories
  61. Signal Processing for 5G
  62. Analog Circuits
  63. Cell Towers
  64. Computer
  65. Digital Circuits
  66. Fourier Series
  67. HomePage
  68. Information and Coding Theory
  69. Laplace Transform
  70. MySQL
  71. Node.js
  72. Search
  73. ShareLinkF
  74. Statistics
  75. Z Transform

Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

MATLAB Code for BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

  QPSK offers double the data rate of BPSK while maintaining a similar bit error rate at low SNR when Gray coding is used. It shares spectral efficiency with 4-QAM and can outperform 4-QAM or 16-QAM in very noisy channels. QPSK is widely used in practical wireless systems, often alongside QAM in adaptive modulation schemes [Read more...]   MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Codes 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

Differences between Baseband and Passband Modulation Techniques

  1. Frequency Translation Baseband Modulation: The signal occupies the lower end of the frequency spectrum, close to DC (0 Hz). Noise at these frequencies (such as 1/f noise or flicker noise) can significantly impact the signal.  Passband Modulation: The signal is shifted to a higher frequency range by modulating it with a carrier frequency. This translation can help to avoid low-frequency noise and interference, which are often more prevalent and stronger in the baseband. 2. Bandpass Filtering Baseband Modulation: The filtering of baseband signals is often limited by the need to preserve the low-frequency components of the signal. This makes it difficult to filter out low-frequency noise effectively. Passband Modulation: The modulated signal can be passed through a bandpass filter centered around the carrier frequency. This filter can significantly attenuate out-of-band noise, reducing the overall noise power that affects the signal. It can also help to mitigate interfer...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combina...