Skip to main content

5G : Theoretical Aspects | Frequency & Spectrum, Speed, Massive MIMO & OFDM


 

5G technology is a brand-new technology that will supply us with data rates that are significantly faster than 4G. It works at frequencies below 6 GHz in many countries. But in future, 5G frequencies will range from 26 to 100 GHz (These frequencies will be used for the 5G backhaul connection, and the end user will connect to a local cell tower utilizing somewhat lower frequency bands, specifically the 1 to 7 GHz bands.). With a 1 millisecond latency, it can deliver multi-gigabit per second data speeds (over the air). The millimeter wave band is chosen for 5G technology. However, 5G is currently being deployed in a large number of countries (almost 60+). Because it operates at the EHF band and has very low on-the-air latency, 5G will lead automation in industries, internet connected vehicles for smooth traffic, tele-medicine, augmented reality (AR), and virtual reality (VR). Three key technologies that will enable 5G are millimeter wave spectrum, OFDM, and massive MIMO. One of the most prominent reasons for developing 5G technology is that the number of internet-connected devices is continually expanding. Due of its large available bandwidth, 5G can manage more devices connecting to the BS at the same time. It has the capacity to handle thousands of devices per square kilometer that are connected to the 5G network.

What's new in 5G Technology

1. Enhanced Mobile Broadband (EMBB)

Users of 4G receive about 10 megabits per second, whereas 5G users receive 100 megabits per second. 5G is predicted to have a peak data throughput of 10 GBits/s, compared to 1 GBit/s for 4G. 5G is expected to have ten times the connection density of 4G. In comparison to 4G, 5G is expected to require less power.

2. Infrastructure for 5G Technology

Because it is a new technology, the infrastructure, equipment, and so on will be considerably different from the current network. In 5G, the coverage zone under a cell will be relatively tiny Because higher frequencies may only travel a limited distance in the earth's atmosphere. Tiny cells are commonly

Also read about what is 5g RAN?
 
referred to as a microcell. Gases, vapor, and other substances in the atmosphere will absorb very high frequency waves. It also has a hard time penetrating thick obstacles because to the increased frequency. As a result, the microcell will be mostly coupled to user devices like PDAs. After that, the microcells will be linked to BS. Then one BS will be connected to another BS through backhaul.

Backhaul is a concept in which a free space LOS channel connects two high BS towers. Simply said, the line of sight path of two high BSs will be unobstructed. However, because the millimeter wave spectrum has more bandwidth, it can accommodate higher data rates. In backhaul communication, the use of wires and fiber optics is reduced. As a result, communication is completely wireless.

3. Dense connectivity and large network capacity

5G is planned to support a connection density up to 10^(6) per square kilometer, which is about ten times more than 4G. The important technologies that will boost the capacity of the 5G network are discussed below.

4. Interference in 5G Network

Interference is a concern since the number of internet-connected gadgets per square kilometer is in the thousands. As a result, it is necessary to eliminate interferences between devices in a very intelligent manner. Precoding in massive MIMO and beamforming will be quite beneficial in this situation.

Key Technologies to enable 5G Technology

1. Extremely high frequency & bandwidth

2. OFDM

3. Massive MIMO

1. Extremely high frequency & bandwidth

In general millimetre wave band is suitable for high data rate communication. Although some frequency band, like, 60 GHz band is easily absorbed by oxygen in atmosphere, but it a good plus for indoor communication.

In comparison to 30 - 60 GHz electromagnetic bands, oxygen in the environment absorbs 60 GHz frequency more. As a result, the 60 GHz millimeter wave band is typically appropriate for indoor communication. Indoor communication has a much shorter range than outdoor communication. Because 60 GHz attenuates significantly with distance, it rarely interacts with outdoor frequency bands. In 60 GHz indoor communication, however, device to device or D2D interference is less. So, it is a big plus for that.

2. OFDM

We've already written an article about OFDM. We covered how OFDM suppresses inter-symbol interferences. When it comes to frequency selective fading, OFDM offers an excellent resistance. It also improves spectrum efficiency.

3. How Massive MIMO increases data rate in 5G

Massive MIMO is critical for 5G communications. Let's pretend that there's simply one transmitter and one reception antenna. Between the transmitter and the receiver, there is only one communication path or data stream accessible. There are four simultaneous paths or data streams between the transmitter and receiver if 2*2 MIMO is used. However, you should be aware that there are two independent paths that a transmitter and receiver could take. Similarly, there are three antennas on the transmitter side and two antennas on the receiver side for 3*2 MIMO. The maximum number of simultaneous data streams between TX and RX is defined as.


Number of simultaneous data stream = min ( M, N)

where, M = number of antennas at transmitter side
N= number of antennas at receiver side

More examples:
If 4*4 MIMO or number of transmitter antenna (antenna element) equal to 4 and number of receiver side antenna = 4; then number is simultaneous data stream between transmitter and receiver is 4.
Similarly, for 5*6 MIMO, number of simultaneous data stream = 5
for 6*6 MIO, it is 6.

In a huge MIMO system, we can get independent eigen pathways using SVD. Signal processing becomes more simple as a result of these independent paths.

Full-duplex radio technology in 5G


In full duplex radio, transmit and receive in the same frequency bands at the same time. Unlike FDD and TDD, when both links use the entire bandwidth at the same time. As a result, self-interference is a critical challenge in full duplex transmission.

#Documentation of next-g wireless communication 5g technology
How many companies have developed multibeam backhaul or point to multipoint wireless products in E band frequency?
What are the handover authentication protocols used in 5g network?




People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...