Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Channel Impulse Response (CIR)


Channel Impulse Response (CIR)


 The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.
 

What is the Channel Impulse Response (CIR) ?

It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  at time 0 for the signal. Using a Dirac Delta function, we can approximate this.
 ...(i)
δ(t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of Î´(t) is calculated.

As a result, all frequencies are responded to equally by Î´(t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all frequencies, Î´(t) becomes the perfect option for determining how a system will react.

Channel Impulse Response (CIR) and Multi-path:

If we send a signal in the typical wireless communication medium, that signal will arrive at the receiver as MPCs or multi-paths [Read more]. They arrive at the recipient at different times. They are linear in nature and are delayed variants of the same signal.

The Doppler effect is detected when either the transmitter or receiver or both are moving. The receiving frequency increases as the MS or mobile station approaches the BS or base station. When MS moves away from the receiver, on the other hand, the frequency of receiving decreases.

Channel Impulse Response Equation:

y(t) = x (t ) * h (t) ...(ii)
 
 Where, '*' denotes convolution in time domain

y(t) = Σ x (t - τ) h (t, τ) ...(iii)

A radio channel's time-variant impulse response, where the channel impulse response or channel gain varies with time, is described as h (t). When a signal is sent from the transmitter, it arrives at the receiver with a time delay of x (t -Ï„ ). They are duplicates of the same signal that arrive at the receiver via numerous reflecting or refractive pathways. They're also linear because they're scalar multiples of one another.



The above equation (ii) represents the convolution of the transmitted signal with the channel impulse response. Equation (ii) can be rewritten as y(t) = (h*x)(t), where '*' denotes convolution.
 

How does the channel impulse response affect the signal?

Fig: Original Message Signal



Fig: Channel Impulse Response (due to Multi-path or Rayleigh Fading)




Fig: Received Signal after demodulation at the receiver side, which is affected by both rayleigh fading and AWGN noise


Summary

In a Linear Time-Invariant (LTI) system, the output y(t) is given by the convolution of the input signal x(t) with the system's impulse response h(t):

y(t)=x(t)∗h(t)
 
'*' denotes convolution operation in the time domain

When the input signal is an impulse δ(t), the output of the LTI system is the impulse response h(t). This is because the convolution of an impulse with any function returns that function:

δ(t)∗h(t) = h(t)

However, if the input impulse and the received impulse response are not correlated as expected, several factors could be contributing to this discrepancy

 How to calculate bit error rate (BER) from Channel Impulse  Response

To calculate BER versus SNR from a channel impulse response (CIR), you first need to obtain the CIR, which characterizes the effect of the communication channel. Convert the CIR to the frequency domain using the Fourier Transform to get the Channel Frequency Response (CFR). Then, generate a transmitted signal, convolve it with the CIR, and add white Gaussian noise (AWGN) to simulate the received signal. The Signal-to-Noise Ratio (SNR) is calculated as the ratio of the signal power to the noise power, typically expressed in decibels (dB). Demodulate the received signal and compare it with the original transmitted signal to compute the Bit Error Rate (BER)

Deep Dive:

The channel impulse response is calculated using a simple trick. We begin by sending a pilot signal from the transmitter. The data is then retrieved, and the channel Impulse response is calculated. The pilot signal (or bits) are pre-determined. To receive regular updates on channel Impulse Response, we repeat the method in short intervals. The channel Impulse Response is also affected by the environment, such as indoor, outdoor, industrial, residential, etc.

As previously stated, channel impulse response varies depending on the surroundings. For example, channel impulse responses or generated multi-paths are higher in an indoor environment than in an outdoor environment. On the other hand, while comparing different indoor environments, we find that the industrial indoor environment has a higher number of multipath than any other. Because many reflections and refraction on metallic surfaces of heavy equipment, machinery, and other objects generate MPCs in that environment. Compared to MPCs generated outdoors, MPCs formed indoors are closer in time. MPCs are developed outside because of structures, foliage, and other factors. However, compared to indoors, the distance between the transmitter and receiver is greater. As a result, multipath takes longer to reach the receiver than inside.

We generally see clusters in the channel impulse response at higher frequencies (CIR). When MPCs arrive at the receiver and are near in time, they form a cluster. Similarly, there could be several clusters. Let's say we want to send an impulse signal from the transmitter. The signal then travels 100 multipath to reach the receiver. The first 40 MPCs arrive at the receiver in 50 milliseconds, followed by the next 60 MPCs in a 20-millisecond interval, all arriving within 70 milliseconds. The period of the first cluster is 50 milliseconds, and the time duration of the second cluster is 70 milliseconds. And while the time gap between the two clusters is 20 milliseconds, the total duration of the channel impulse response is (50 + 20 + 70) milliseconds.

Also, Read the following: 
  1. What is convolution (full convolution)
  2. Convolution in LTI Wireless Communication Systems
  3. Equalizer to reduce Multi-path Effects using MATLAB 
  4. Channel Impulse Response in the Typical Wireless Communication
  5. MATLAB Code for BER vs SNR from Channel Impulse Response
  6. Convolution in LTI Wireless Communication Systems
  7. Gaussian Random Variable (RV) and its PDF
  8. Doppler Shift
  9. Fading - Slow & Fast and Large & Small Scale Fading
  10. Equalizer - Fundamentals of Channel Estimation  
  11.  Impact of Rayleigh Fading and AWGN on Digital Communication Systems
  12. Channel Matrix Gain

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. clc;clear all;...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Star to Delta Conversion and Vice Versa | star delta conversion

The transformation of a star to a delta and a delta to a star circuit is a hot topic in electrical science and engineering. Examiners often ask about the conversion of star to delta and delta to star circuit diagram. When solving complex circuits, the conversion procedure can sometimes ease calculations and save time. Without further ado, we'll go over the characteristics of both a star and a delta circuit. As its title suggests, the star circuit looks like a star. Delta circuit, on the other hand, looks like a delta. Now we'll look at the mathematical method for converting delta to star and star to delta. Delta to Star R1 = RaRb / (Ra + Rb + Rc) R2 = RbRc / (Ra + Rb + Rc) R3 = RaRc / (Ra + Rb + Rc) Use star to delta online converter and vice versa Star to Delta Ra = (R1R2 + R2R3 + R3R1) / R2 Rb = (R1R2 + R2R3 + R3R1) / R3 Rc = (R1R2 + R2R3 + R3R1) / R1 Next Page>>

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

MIMO, massive MIMO, and Beamforming

  The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via  beamforming  or directional transmission. 1. Some essential characteristics of a MIMO system 1.1. Spatial Division Multiplexing Access (SDMA) SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter. 1.2. Spatial Multiplexing Another essential ...

MATLAB Code for Rank and Condition Number of a Channel Matrix

To assess the signal strengths of various multipaths between TX and RX and enable communication, the rank and condition numbers of a channel matrix are highly helpful characteristics. Signal multipath propagation is a typical occurrence in wireless communication. Phases shift and the signal weakens during this process. We are discussing signal phases in this context. When numerous multipaths arrive at the receiver, the resulting signal may be additive or destructive because of phase alterations. A channel matrix is referred to as a sparse matrix if it only has a few stronger elements and the majority of the other elements are zero. Finding rank and condition number for sparse matrices is important for numerous reasons. That topic has already been covered in another article [ click here ]. We will just talk about the corresponding MATLAB codes here. MATLAB Code for Rank and Condition Number of a Channel Matrix %Author: Salim Wireless For study materials on wireless %com...

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation

   Pulse Width Modulation (PWM) MATLAB Script   clc; clear all; close all; fs=5; %frequency of the sawtooth signal fm=5; %frequency of the message signal sampling_frequency = 10e3; a=0.5; % amplitide t=0:(1/sampling_frequency):1; %sampling rate of 10kHz sawtooth=1.01*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave subplot(4,1,1); plot(t,sawtooth); % plotting the sawtooth wave title('Comparator Wave'); msg=a.*sin(2*pi*fm*t); %generating message wave subplot(4,1,2); plot(t,msg); %plotting the sine message wave title('Message Signal'); for i=1:length(sawtooth) if (msg(i)>=sawtooth(i)) pwm(i)=1; %is message signal amplitude at i th sample is greater than %sawtooth wave amplitude at i th sample else pwm(i)=0; end end subplot(4,1,3); plot(t,pwm,'r'); title('PWM'); axis([0 1 0 1.1]); %to keep the pwm visible during plotting. %% Demodulation % Demodulation: Measure the pulse width to reconstruct the signal demodulated_signal = zeros(size(msg)); for i =...