Skip to main content

Channel Impulse Response (CIR)


What is the Channel Impulse Response (CIR)?

The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.

It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude at time 0 for the signal. Using a Dirac Delta function, we can approximate this.

Dirac Delta Function
Fig: Dirac Delta Function

The result of this calculation is that all frequencies are responded to equally by ฮด(t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all frequencies, ฮด(t) becomes the perfect option for determining how a system will react.


Channel Impulse Response (CIR) and Multi-path

If we send a signal in the typical wireless communication medium, that signal will arrive at the receiver as MPCs or multi-paths [Read more]. They arrive at the recipient at different times, and are linear in nature, delayed variants of the same signal.

The Doppler effect is detected when either the transmitter or receiver, or both, are moving. The receiving frequency increases as the mobile station approaches the base station. When the mobile station moves away, the receiving frequency decreases.

y(t) = ฮฃ x (t - ฯ„) h (t, ฯ„) …(iii)

A radio channel’s time‑variant impulse response, where the channel impulse response or channel gain varies with time, is described as h (t). When a signal is sent from the transmitter, it arrives at the receiver with a time delay of x (t ‑ ฯ„). They are duplicates of the same signal that arrive at the receiver via numerous reflecting or refractive pathways. They’re also linear because they’re scalar multiples of one another.

Channel impulse response illustration

The above equation (ii) represents the convolution of the transmitted signal with the channel impulse response. Equation (ii) can be rewritten as y(t) = (h * x)(t), where '*' denotes convolution.


How does the channel impulse response affect the signal?

Real‑world wireless communication is often modelled as a Linear Time‑Invariant (LTI) system, where it is assumed that the channel gain remains constant during the transmission of each symbol. However, channel estimation is frequently performed to track time‑varying channel conditions. In this model, the original message bits or symbols are affected by the wireless channel, which can be represented as the convolution of the transmitted signal with the channel’s impulse response. This impulse response accounts for the different path gains caused by multipath propagation. As a result, the receiver does not receive the original signal directly. These multipath components can interfere constructively or destructively, significantly altering the received signal.

Original message signal
Fig: Original Message Signal
Channel Impulse Response due to multipath or Rayleigh fading
Fig: Channel Impulse Response (due to Multi‑path or Rayleigh Fading)
Received signal after demodulation with fading and noise
Fig: Received Signal after demodulation at the receiver side, which is affected by both Rayleigh fading and AWGN noise

Online Channel Impulse Response Simulator


Summary

In a Linear Time‑Invariant (LTI) system, the output y(t) is given by the convolution of the input signal x(t) with the system’s impulse response h(t):

y(t) = x(t) ∗ h(t)

‘∗’ denotes the convolution operation in the time domain.

When the input signal is an impulse ฮด(t), the output of the LTI system is the impulse response h(t). This is because the convolution of an impulse with any function returns that function:

ฮด(t) ∗ h(t) = h(t)

However, if the input impulse and the received impulse response are not correlated as expected, several factors could be contributing to this discrepancy.


How to calculate bit error rate (BER) from Channel Impulse Response

To calculate BER versus SNR from a channel impulse response (CIR), you first need to obtain the CIR, which characterizes the effect of the communication channel. Generate a transmitted signal, convolve it with the CIR, and add white Gaussian noise (AWGN) to simulate the received signal. The Signal‑to‑Noise Ratio (SNR) is calculated as the ratio of the signal power to the noise power, typically expressed in decibels (dB). Demodulate the received signal and compare it with the original transmitted signal to compute the Bit Error Rate (BER).


MATLAB code for channel impulse response estimation using FFT‑based channel estimation method

Screenshot of MATLAB channel estimation code
(Get the MATLAB Code)

Deep Dive:

The channel impulse response is calculated using a simple trick. We begin by sending a pilot signal from the transmitter. The data is then retrieved, and the channel Impulse response is calculated. The pilot signal (or bits) are pre‑determined. To receive regular updates on channel Impulse Response, we repeat the method in short intervals. The channel Impulse Response is also affected by the environment, such as indoor, outdoor, industrial, residential, etc.

As previously stated, channel impulse response varies depending on the surroundings. For example, channel impulse responses or generated multi‑paths are higher in an indoor environment than in an outdoor environment. On the other hand, while comparing different indoor environments, we find that the industrial indoor environment has a higher number of multipath than any other. Because many reflections and refraction on metallic surfaces of heavy equipment, machinery, and other objects generate MPCs in that environment. Compared to MPCs generated outdoors, MPCs formed indoors are closer in time. MPCs are developed outside because of structures, foliage, and other factors. However, compared to indoors, the distance between the transmitter and receiver is greater. As a result, multipath takes longer to reach the receiver than inside.

We generally see clusters in the channel impulse response at higher frequencies (CIR). When MPCs arrive at the receiver and are near in time, they form a cluster. Similarly, there could be several clusters. Let’s say we want to send an impulse signal from the transmitter. The signal then travels 100 multipath to reach the receiver. The first 40 MPCs arrive at the receiver in 50 milliseconds, followed by the next 60 MPCs in a 20‑millisecond interval, all arriving within 70 milliseconds. The period of the first cluster is 50 milliseconds, and the time duration of the second cluster is 70 milliseconds. And while the time gap between the two clusters is 20 milliseconds, the total duration of the channel impulse response is (50 + 20 + 70) milliseconds.


Further Reading

  1. Online Channel Impulse Response Simulator
  2. What is convolution (full convolution)
  3. Convolution in LTI Wireless Communication Systems
  4. Equalizer to reduce Multi‑path Effects using MATLAB
  5. Channel Impulse Response in the Typical Wireless Communication
  6. MATLAB Code for BER vs SNR from Channel Impulse Response
  7. Convolution in LTI Wireless Communication Systems
  8. Gaussian Random Variable (RV) and its PDF
  9. Doppler Shift
  10. Fading – Slow & Fast and Large & Small Scale Fading
  11. Equalizer – Fundamentals of Channel Estimation
  12. Impact of Rayleigh Fading and AWGN on Digital Communication Systems
  13. Channel Matrix Gain

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Coherence Bandwidth and Coherence Time

๐Ÿงฎ Coherence Bandwidth ๐Ÿงฎ Coherence Time ๐Ÿงฎ MATLAB Code s ๐Ÿ“š Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Pulse Position Modulation (PPM)

Pulse Position Modulation (PPM) is a type of signal modulation in which M message bits are encoded by transmitting a single pulse within one of 2แดน possible time positions within a fixed time frame. This process is repeated every T seconds , resulting in a data rate of M/T bits per second . PPM is a form of analog modulation where the position of each pulse is varied according to the amplitude of the sampled modulating signal , while the amplitude and width of the pulses remain constant . This means only the timing (position) of the pulse carries the information. PPM is commonly used in optical and wireless communications , especially where multipath interference is minimal or needs to be reduced. Because the information is carried in timing , it's more robust in some noisy environments compared to other modulation schemes. Although PPM can be used for analog signal modulation , it is also used in digital communications where each pulse position represents a symbol or bit...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...