Skip to main content

Channel Impulse Response (CIR)


What is the Channel Impulse Response (CIR)?

The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.

It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude at time 0 for the signal. Using a Dirac Delta function, we can approximate this.

Dirac Delta Function
Fig: Dirac Delta Function

The result of this calculation is that all frequencies are responded to equally by δ(t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all frequencies, δ(t) becomes the perfect option for determining how a system will react.


Channel Impulse Response (CIR) and Multi-path

If we send a signal in the typical wireless communication medium, that signal will arrive at the receiver as MPCs or multi-paths [Read more]. They arrive at the recipient at different times, and are linear in nature, delayed variants of the same signal.

The Doppler effect is detected when either the transmitter or receiver, or both, are moving. The receiving frequency increases as the mobile station approaches the base station. When the mobile station moves away, the receiving frequency decreases.

y(t) = ÎŖ x (t - Ī„) h (t, Ī„) …(iii)

A radio channel’s time‑variant impulse response, where the channel impulse response or channel gain varies with time, is described as h (t). When a signal is sent from the transmitter, it arrives at the receiver with a time delay of x (t ‑ Ī„). They are duplicates of the same signal that arrive at the receiver via numerous reflecting or refractive pathways. They’re also linear because they’re scalar multiples of one another.

Channel impulse response illustration

The above equation (ii) represents the convolution of the transmitted signal with the channel impulse response. Equation (ii) can be rewritten as y(t) = (h * x)(t), where '*' denotes convolution.


How does the channel impulse response affect the signal?

Real‑world wireless communication is often modelled as a Linear Time‑Invariant (LTI) system, where it is assumed that the channel gain remains constant during the transmission of each symbol. However, channel estimation is frequently performed to track time‑varying channel conditions. In this model, the original message bits or symbols are affected by the wireless channel, which can be represented as the convolution of the transmitted signal with the channel’s impulse response. This impulse response accounts for the different path gains caused by multipath propagation. As a result, the receiver does not receive the original signal directly. These multipath components can interfere constructively or destructively, significantly altering the received signal.

Original message signal
Fig: Original Message Signal
Channel Impulse Response due to multipath or Rayleigh fading
Fig: Channel Impulse Response (due to Multi‑path or Rayleigh Fading)
Received signal after demodulation with fading and noise
Fig: Received Signal after demodulation at the receiver side, which is affected by both Rayleigh fading and AWGN noise

Online Channel Impulse Response Simulator


Summary

In a Linear Time‑Invariant (LTI) system, the output y(t) is given by the convolution of the input signal x(t) with the system’s impulse response h(t):

y(t) = x(t) ∗ h(t)

‘∗’ denotes the convolution operation in the time domain.

When the input signal is an impulse δ(t), the output of the LTI system is the impulse response h(t). This is because the convolution of an impulse with any function returns that function:

δ(t) ∗ h(t) = h(t)

However, if the input impulse and the received impulse response are not correlated as expected, several factors could be contributing to this discrepancy.


How to calculate bit error rate (BER) from Channel Impulse Response

To calculate BER versus SNR from a channel impulse response (CIR), you first need to obtain the CIR, which characterizes the effect of the communication channel. Generate a transmitted signal, convolve it with the CIR, and add white Gaussian noise (AWGN) to simulate the received signal. The Signal‑to‑Noise Ratio (SNR) is calculated as the ratio of the signal power to the noise power, typically expressed in decibels (dB). Demodulate the received signal and compare it with the original transmitted signal to compute the Bit Error Rate (BER).


MATLAB code for channel impulse response estimation using FFT‑based channel estimation method

Screenshot of MATLAB channel estimation code
(Get the MATLAB Code)

Deep Dive:

The channel impulse response is calculated using a simple trick. We begin by sending a pilot signal from the transmitter. The data is then retrieved, and the channel Impulse response is calculated. The pilot signal (or bits) are pre‑determined. To receive regular updates on channel Impulse Response, we repeat the method in short intervals. The channel Impulse Response is also affected by the environment, such as indoor, outdoor, industrial, residential, etc.

As previously stated, channel impulse response varies depending on the surroundings. For example, channel impulse responses or generated multi‑paths are higher in an indoor environment than in an outdoor environment. On the other hand, while comparing different indoor environments, we find that the industrial indoor environment has a higher number of multipath than any other. Because many reflections and refraction on metallic surfaces of heavy equipment, machinery, and other objects generate MPCs in that environment. Compared to MPCs generated outdoors, MPCs formed indoors are closer in time. MPCs are developed outside because of structures, foliage, and other factors. However, compared to indoors, the distance between the transmitter and receiver is greater. As a result, multipath takes longer to reach the receiver than inside.

We generally see clusters in the channel impulse response at higher frequencies (CIR). When MPCs arrive at the receiver and are near in time, they form a cluster. Similarly, there could be several clusters. Let’s say we want to send an impulse signal from the transmitter. The signal then travels 100 multipath to reach the receiver. The first 40 MPCs arrive at the receiver in 50 milliseconds, followed by the next 60 MPCs in a 20‑millisecond interval, all arriving within 70 milliseconds. The period of the first cluster is 50 milliseconds, and the time duration of the second cluster is 70 milliseconds. And while the time gap between the two clusters is 20 milliseconds, the total duration of the channel impulse response is (50 + 20 + 70) milliseconds.


Further Reading

  1. Online Channel Impulse Response Simulator
  2. What is convolution (full convolution)
  3. Convolution in LTI Wireless Communication Systems
  4. Equalizer to reduce Multi‑path Effects using MATLAB
  5. Channel Impulse Response in the Typical Wireless Communication
  6. MATLAB Code for BER vs SNR from Channel Impulse Response
  7. Convolution in LTI Wireless Communication Systems
  8. Gaussian Random Variable (RV) and its PDF
  9. Doppler Shift
  10. Fading – Slow & Fast and Large & Small Scale Fading
  11. Equalizer – Fundamentals of Channel Estimation
  12. Impact of Rayleigh Fading and AWGN on Digital Communication Systems
  13. Channel Matrix Gain

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...